The Locating Chromatic Number for Pizza Graphs

Nurul Maulida Surbakti, Dinda Kartika, Hamidah Nasution, Sri Dewi
*e-mail: nurulmaulida@unimed.ac.id

1,2,3Department of Mathematics, Faculty Mathematics and Natural Science, Universitas Negeri Medan, Indonesia
4Department of Computer Science, Faculty of Mathematics and Natural Science, Universitas Negeri Medan, Indonesia

ABSTRACT

The location chromatic number for a graph is an extension of the concepts of partition dimension and vertex coloring in a graph. The minimum number of colors required to perform location coloring in graph \(G \) is referred to as the location chromatic number of graph \(G \). This research is a literature study that discusses the location chromatic number of the Pizza graph. The approach used to calculate the location-chromatic number of these graphs involves determining upper and lower bounds. The results obtained show that the location chromatic number of the pizza graph is \(4 \) for \(n = 3 \) and \(n \) for \(n \geq 4 \).

Keywords: Location Chromatic Number, Pizza Graph, Color Code

INTRODUCTION

In this increasingly advanced era, mathematics has become an important tool for solving complex problems using modeling methods. Mathematical modeling allows us to describe and analyze real-life situations, such as mapping areas, determining the shortest routes, and exploring other phenomena. Graph theory is one of the most important and evolving branches of mathematics (Surbakti & Ramadhani, 2022).

Graphs are used to represent a variety of real-world situations, such as social networks (Bhatti et al., 2023). Research in the field of graph theory plays an important role in a wide range of disciplines, including computer science, optimization, logistics, and networking.

One of the interesting topics in graph theory is location coloring on a graph, which is an extension of the node coloring and partition dimensions on the graph.

Location coloring in a graph is an attempt to determine the minimum number of colors needed to color all the nodes on the graph, provided that no two nodes are connected by sides that have the same color (Asmiati et al., 2018). Node coloring has various benefits in everyday life, such as scheduling, radio frequency determination, and games (Surbakti, 2023).

Node coloring on the graph \(G = (V,E) \) refers to the process of mapping each node \(v \) into the set of native numbers \(c(v) \), where \(c: V \rightarrow N \), in such a way that each adjacent node has a different color (i.e., \(c(v) \neq c(w) \)). If the number of colors used is \(k \), then \(G \) is said to have \(k \)-coloring. The chromatic number of \(G \), marked with \(\chi(G) \), is the smallest native number of \(k \) that allows coloring \(k \) where each of the two adjacent nodes has a different color. The chromatic number of the location of \(G \) is marked by \(\chi_L(G) \) and is the least native number of \(k \) which allows the coloring of a location with \(k \) different colors for \(G \). In this context, \(\chi(G) \leq \chi_L(G) \) for each
The Locating Chromatic, ... Nurul M.S, Dinda K, Hamidah N and Sri D, ...Sainmatika, ...Volume 20, ...No.2, ...Desember 2023,...126-131

graph connected to G, since each coloring location is also a coloring (Harary & Melter, 1976).

Definition 1.1 (Chartrand et al., 2002) Let G be a finite and connected graph. Let c be the appropriate coloring of a connected graph G, where m is a positive integer, and the colors used are 1, 2, ..., and m. Thus, the coloring c can be regarded as a partition \(\Pi \) of \(V(G) \) into color classes (independent sets) \(C_1, C_2, \ldots, C_m \), where the nodes of \(C_j \) are colored by \(j \) for \(1 \leq j \leq m \). The color code \(c_{\Pi}(u) \) of a node \(u \) in \(G \) is the ordered \(m \)-tuple \((d(u, C_1), \ldots, d(u, C_m)) \) where \(d(u, C_j) = \min\{d(u, x) | x \in C_j\} \) for \(1 \leq j \leq m \). If all vertices in \(V(G) \) have distinct color codes, then the coloring is called the locating-chromatic number of graph \(G \), marked by \(\chi_{L}(G) \).

Chartrand and his colleagues have determined the chromatic number of locations for some types of graphs, such as tracks, cycles, complete multipartite graphs, and double-star graphs (Chartrand et al., 2002).

Research into the chromatic number of locations in the context of graphs remains interesting to this day, as no theorem can provide a definitive solution to the calculation of the chromatic number of places on all types of graphs. In 2021, Irawan et al. determined the chromatic number of locations on the origami graph. Then Rahmatialia, et al. (2022) determine the chromatic number of the locations of the trajectory split graph (Rahmatialia et al., 2022). Then, in 2023, Welvyanti et al. defined the chromatic number of locations in the lobster graph (Welvyanti et al., 2023). In the same year, there were several studies related to the location of chromatic numbers for Certain Operations of Origami Graphs (Asmiati et al., 2023) and edge amalgamation graphs of star graphs with order \(m + 1 \) and complete graphs with order \(n \) (Hartiansyah & Darmaji, 2023).

From the description above, researchers are interested in exploring the chromatic number of locations on the pizza graph. The pizza graph noted by \(PZ_n \) is a graph with \(V(PZ_n) = \{u, v_i, w_i: 1 \leq i \leq n\} \) and \(E(PZ_n) = \{uv_i, v_iw_i: 1 \leq i \leq n\} \cup \{w_i, w_{i+1}: 1 \leq i \leq n-1\} \cup \{w_n, w_1\} \). The pizza graph \(PZ_n \) is a graph with \(2n + 1 \) nodes obtained from a subdivision of the \(W_n \) wheel graph on each finger (Nabila & Salman, 2015).

Theorem 1.1 (Behtoei, 2011) For \(n \geq 3 \), Let \(W_n = K_1 + C_n \) and \(l = \min\{k \in N | n \leq \frac{1}{2}(k^3 - k^2)\} \).

\[
\chi_L(W_n) = \begin{cases}
1 + \chi_L(C_n), & \text{if } 3 \leq n < 9; \\
l + 1, & \text{if } n \neq \frac{1}{2}(l^3 - l^2 - 1) \text{ and } n \geq 9; \\
l + 2, & \text{if } n = \frac{1}{2}(l^3 - l^2 - 1) \text{ and } n \geq 9.
\end{cases}
\]

MATERIAL AND METHOD

The research is a literary study to determine the chromatic number of locations on the pizza graph. The research begins with defining the problem to be discussed. Step two: describe the pizza chart marked with \(PZ_n \). The set of nodes and arches of \(PZ_n \) is defined as follows.

Definition 2.1 (Nabila & Salman, 2015) A pizza graph \(PZ_n \) is a graph with \(V(PZ_n) = \{u, v_i, w_i: 1 \leq i \leq n\} \) and \(E(PZ_n) = \{uv_i, v_iw_i: 1 \leq i \leq n\} \cup \{w_i, w_{i+1}: 1 \leq i \leq n-1\} \cup \{w_n, w_1\} \).

As an illustration, Figure 1 is a pizza graph with 4 nodes marked with \(PZ_4 \).
Step three: create a coloring c and a partition Π on $V(P_{zn})$, and proceed to determine $\chi_L(P_{zn})$. Step four, prove the chromatic number of locations on the pizza graph P_{zn}. If $\chi_L(P_{zn}) = 4$, $\chi_L(P_{zn}) \geq 4$ and $\chi_L(P_{zn}) \leq 4$ for $n = 3$. To prove the lower boundary of $\chi_L(P_{zn}) \geq 4$, then refer to the Theorem 1.1. proving that the upper boundaries of $\chi_L(P_{zn})$ by constructing the functions and color codes of $V(P_{zn})$. To prove the bottom limit of $V\chi_L(P_{zn}) \geq n$, it will be shown that $n - 1$ color is not sufficient. Next, prove that $\chi_L(P_{zn}) \leq n$ by constructing functions and color codes of $V(P_{zn})$. Step five, make a conclusion based on the analysis of the proven theorems.

RESULT AND DISCUSSION

Suppose $n \in N$ with $n \geq 3$ and W_n is a wheel graph with $n + 1$ nodes, which has a node in the center and adjacent to the entire nodes. A pizza graph with $2n + 1$ nodes, noted with P_{zn} is a graph of a subdivision of the W_n wheel graph on each finger. A pizza graph with P_{zn} is the graph with $V(P_{zn}) = \{u, v_1, w_i; 1 \leq i \leq n\}$ and $E(P_{zn}) = \{uv_i, v_iw_i; 1 \leq i \leq n\} \cup \{w_iw_{i+1}; 1 \leq i \leq n - 1\} \cup \{w_nw_1\}.

Pizza Graph Location Chromatic Number

Theorem 3.1. Suppose n is a positive integer, for $n \geq 3$. The chromatic number of the location of the pizza graph P_{zn} is vertical.

$$\chi_L(P_{zn}) = \begin{cases} 4, & \text{for } n = 3; \\ n, & \text{for } n \geq 4. \end{cases}$$

The evidence is divided into two cases.

Case 1. For $n = 3$

First, it will prove the bottom limit of the chromatic number of locations of the pizza graph for $n = 3$. Since the pizza chart has a wheel chart with each bow adjacent to the central node, based on Theorem 1.1 it is proved that $\chi_L(P_{zn}) \geq 4$ for $n = 3$. Next, it will be shown that 4 is the upper boundary of the chromatic number of locations of the graph P_{zn}. To prove the top boundaries, we only need to determine the presence of the optimum coloring of the location $c: V(P_{zn}) \rightarrow \{1,2,3,4\}$. For $n = 3$, construct the function as follows:

$$c(u) = 4.$$
$$c(v_i) = \begin{cases} i + 1, & \text{for } i \in [1,2]; \\ 1, & \text{for } i = n. \end{cases}$$
$$c(w_i) = i, \text{ for } i \in [1, n].$$

By using the coloring c, we obtain the color codes of $V(P_{zn})$ as follows:

$$c_n(u) = \begin{cases} 0, & \text{for 4th component}; \\ 1, & \text{otherwise}. \end{cases}$$

$$c_n(v_i) = \begin{cases} 0, & \text{for } i + 1^{\text{th}} \text{ component}, i \in [1,2]; \\ 0, & \text{for } 1^{\text{st}} \text{ component}, i = n; \\ 1, & \text{for } i^{\text{th}} \text{ component}, i \in [1,n]; \\ 1, & \text{for } 4^{\text{th}} \text{ component}, i \in [1,n]; \\ 2, & \text{otherwise}. \end{cases}$$
Based on Definition 1.1 Since all vertices in $V(PZ_n)$ have distinct color codes, the coloring is desired to locate coloring. Thus, have distinct color codes, then the coloring is desired locating coloring. Thus, $\chi_L(PZ_n) = 4$.

Case 2. For $n \geq 4$

To determine the lower bound, we will show that $n - 1$ colors are insufficient. For a contradiction, assume that there exists a $(n - 1)$-locating coloring c on PZ_n for $n \geq 4$. We assign $\{c(u), c(v_l), c(w_l)\} = \{1, 2, \cdots, n - 1\}$.

We have $c(u) \neq c(v_l)$ and $c(v_l) \neq c(w_l)$ because the vertices are adjacent. Let

$$c(u) = n - 1.$$
$$c(v_l) = \begin{cases}
(i + 1, & \text{for } i \in [1, n - 3]; \\
1, & \text{for } i \in [n - 2, n].
\end{cases}$$
$$c(w_l) = i, \text{for } i \in [1, n - 1].$$

and otherwise are colored with 2. Thus $c_\pi(u) = c_\pi(w_{n-1})$ which is a contradiction. Thus, we have $\chi_L(PZ_n) \geq n$.

To show that n is an upper bound for the locating chromatic number of the pizza graph PZ_n, it suffices to prove the existence of an optimal locating coloring $c: V(PZ_n) \to \{1, 2, \cdots, n\}$. For $n \geq 4$, we construct the function in the following way:

$$c(u) = n.$$
$$c(v_l) = \begin{cases}
(i + 1, & \text{for } i \in [1, n - 3]; \\
1, & \text{for } i \in [n - 2, n].
\end{cases}$$
$$c(w_l) = i, \text{for } i \in [1, n].$$

By using the coloring c, we obtain the color codes of $V(PZ_n)$ as follows:

$$c_\pi(u) = \begin{cases}
0, & \text{for } i^{\text{th}} \text{ component, } i \in [1, n - 2]; \\
0, & \text{for } 1^{\text{st}} \text{ component, } i \in n - 1; \\
1, & \text{for } i^{\text{th}} \text{ component, } i \in [1, n]; \\
1, & \text{for } 4^{\text{th}} \text{ component, } i \in [1, n - 1]; \\
2, & \text{otherwise}.
\end{cases}$$

Figure 2 shows the minimum location coloring PZ_4.
CONCLUSION

The Pizza graph’s discovered locating chromatic number is

\[\chi_L(P_n) = \begin{cases}
4, & \text{for } n = 3; \\
n, & \text{for } n \geq 4.
\end{cases} \]

The author suggests further research to be able to determine the chromatic number of locations from the specific graph results of the operation. For example, the graph comb operation results from a star graph and a cycle graph.

Acknowledgments

The author expresses his gratitude to the LPPM Universitas Negeri Medan, which has facilitated the implementation of independent research activities, as well as to the parties who have helped this research.

REFERENCES

Surbakti, N. M. (2023). ALGORITMA WELCH POWELL PADA PENJADWALAN SEMINAR PROPOSAL SKRIPSI DI PROGRAM STUDI MATEMATIKA UNIVERSITAS NEGERI MEDAN IMPLEMENTATION OF GRAPH COLORING USING THE WELCH POWELL ALGORITHM IN SCHEDULING THESIS PROPOSAL SEMINARS IN THE MATHEMATICS STUDY PROGRAM. *Jurnal Deli Sains*