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ABSTRACT 
The locating chromatic number is a graph invariant that quantifies the minimum 

number of colors required for proper vertex coloring, ensuring that any two vertices 

with the same color have distinct sets of neighbors. This study introduces a new 

operation on generalized Petersen graphs denoted by 𝑁𝑃(𝑚,1), exploring its impact on 

locating chromatic numbers. Through systematic analysis, we aim to determine the 

specific conditions under which this operation influences the locating chromatic 

number and provide insights into the underlying graph-theoretical properties. The 

method for computing the locating chromatic number for the new operation on 

generalized Petersen graphs, denoted by 𝑁𝑃(𝑚,1), entails determining the lower and 

upper limits. The results indicate that the locating chromatic number for the new 

operation on the generalized Petersen graph is 4 for 𝑚 = 4 and 5 for 𝑚 ≥ 5. The 

findings contribute to a broader understanding of graph coloring. 
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INTRODUCTION  
The discipline of graph theory, 

which falls under discrete mathematics, 

offers a robust framework for 

representing relationships and 

connections among diverse entities. One 

intriguing aspect of graph theory is the 

study of graph colorings, where vertices 

or edges are assigned colors according to 

certain rules. The concept of chromatic 

numbers and related variations has been a 

focal point in this field. 

The notion of locating chromatic 

numbers for graphs was first proposed in 

2002 (Chartrand et al., 2002) blending 

two key concepts in graph theory: graph 

coloring and the partition dimension of 

graphs. Computing the locating 

chromatic number for arbitrary graphs is 

an NP-complete problem, implying the 

absence of an efficient algorithm for its 

calculation. Nonetheless, numerous 

studies have focused on specific classes 

of graphs to address this challenge. 

Various researchers have 

investigated the locating chromatic 

number of graph operation results, such 

as the Kneser graphs (Ali Behtoei & 

Omoomi, 2011), the corona product of 

two graphs (Baskoro & Purwasih, 2012), 

the joint product of two graphs (A. 

Behtoei & Anbarloei, 2014), and the 

Cartesian product of two complete graphs 

(Ali Behtoei & Omoomi, 2016), and have 

provided their findings. 

 In 2017 (Asmiati et al., 2017) 

found Petersen graphs where the locating 

chromatic number is either four or five. 

Next, Welyanti et al investigate the 

locating chromatic number of a graph 

comprising two components (Welyyanti 

et al., 2017). Furthermore, a methodology 

has been devised to calculate the locating 

chromatic number for origami graphs 𝑂𝑚 
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and their divisions (one point on the 

outside of the edge) (Irawan et al., 2021). 

Subsequently (Asmiati et al., 2023) 

established the locating chromatic 

numbers for specific operations involving 

origami graphs. 

 In 2021, (Inayah et al., 2021) 

established the precise locating chromatic 

number for book graphs. Subsequently 

(Sudarsana et al., 2022), determined 

locating chromatic number values for m-

shadows of complete multipartite graphs 

and paths was accomplished, with certain 

findings deemed optimal. The chromatic 

number of the pizza graph has also been 

found, we get 4 for 𝑛 = 3 and 𝑛 for 𝑛 ≥
5 (Surbakti et al., 2023).  

The subsequent description of the 

generalized Petersen graph is extracted 

from the following source (Watkins, 

1969).  

Definition 1.1. Let {𝑦1, 𝑦2, … , 𝑦𝑚} 
vertices located on the outer cycle and 

{𝑥1, 𝑥2, … , 𝑥𝑚} vertices located on the 

inner cycle for 𝑚 ≥ 3. The generalized 

Petersen graph 𝑃(𝑚, 𝑙), 𝑚 ≥ 3 and 1 ≤
𝑙 ≤ ⌊(𝑚 − 1)/2⌋, 1 ≤ 𝑖 ≤ 𝑚 represents a 

graph with a total of 2n vertices {𝑥𝑖} ∪ 

{𝑦𝑖}, and edges {𝑥𝑖𝑥𝑖+1} ∪  {𝑦𝑖𝑦𝑖+𝑙} ∪ 

{𝑥𝑖𝑦𝑖}. Next, we will introduce a new 

operation for the generalized Petersen 

graph, denoted as 𝑁𝑃(𝑚,1).  

In the subsequent sections 

(Chartrand et al., 2002) delineated the 

fundamental principles of the locating 

chromatic number of a graph. The set of 

vertices adjacent to vertex k in a 

connected graph 𝐻, denoted by 𝑁(𝑓), is 

called the neighborhood of vertex 𝑓.  

Theorem 1.1. Let 𝑟 denote a 

locating coloring in a connected graph 𝐻. 

If 𝑓 and 𝑔 are distinct vertices of 𝐻 such 

that 𝑑(𝑓, 𝑧) = 𝑑(𝑔, 𝑧 for all 𝑧 ∈ 𝑉(𝐻) −
{𝑓, 𝑔}, then 𝑟(𝑓) ≠ 𝑟(𝑔). Specifically, if 

𝑓 and 𝑔 are vertices that are not adjacent, 

and their neighborhoods are different 

(𝑁(𝑓)  ≠  𝑁(𝑔)), then their assigned 

colors under 𝑟 must also be different 

(𝑟(𝑓)  ≠  𝑟(𝑔)).  

Specifically, our exploration 

focuses on the new operation of 

generalized Petersen graphs, which 

extends the classical ones. Generalized 

Petersen graphs have gained prominence 

due to their rich structural properties and 

diverse applications in various scientific 

disciplines.  

The primary objective of this 

study is to ascertain the locating 

chromatic number resulting from 

applying a novel operation on generalized 

Petersen graphs. Subsequently, we 

introduce this new operation, laying the 

groundwork for exploring the locating 

chromatic number. 

 

MATERIAL AND METHOD 

 

The method utilized to determine 

the locating chromatic number of the 

newly introduced operation on the 

generalized Petersen graph consists of the 

following stages: 

The first stage is defining the new 

operation of the generalized Petersen 

graph.  

Definition 2.1 Let a new operation of 

generalized Petersen graph 𝑁𝑃(𝑚,1), for 

𝑚 ≥ 3  is a graph with 𝑉(𝑁𝑃(𝑚,1)) = {𝑥𝑗 , 

𝑥𝑚+𝑗, 𝑦𝑗 , 𝑦𝑚+𝑗 : 𝑗 ∈ {1,2… ,𝑚}} and 

𝐸(𝑁𝑃(𝑚,1))={𝑥𝑗𝑥𝑗+1, 𝑥𝑚+𝑗𝑥𝑚+𝑗+1, 𝑦𝑗𝑦𝑗+1 

𝑦𝑚+𝑗𝑦𝑚+𝑗+1 : 𝑗 ∈ {1,2, … ,𝑚 − 1}} ∪ 

{𝑥𝑚𝑥1, 𝑥2𝑚𝑥2𝑚+1, 𝑦𝑚𝑦1, 𝑦2𝑚𝑦2𝑚+1} ∪ 

{𝑥𝑗𝑦𝑗 , 𝑥𝑚+𝑗𝑦𝑚+𝑗 : 𝑗 ∈  {1,2… ,𝑚}} ∪ 

{𝑥𝑗𝑥𝑚+𝑗 ∶ 𝑗 ∈  {1,2, … ,𝑚}}  

The second stage involves 

determining the lower limit of the new 

operation on the generalized Petersen 

graph by specifying the minimum 

number of colors required to fulfill the 

locating coloring criteria. 

The following theorems provide 

the locating chromatic numbers for both 

the cycle graph and the generalized 

Petersen graph 𝑃(𝑚, 1). 
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Theorem 2.1 (Chartrand et al., 

2003), χ𝐿(𝐶𝑚) = {
3,  for odd 𝑚  
4,  otherwise.

 

Theorem 2.2 (Asmiati et al., 

2017), χ𝐿(𝑃(𝑚, 1)) =

{
4,  for odd 𝑚     
5,  for even 𝑚.   

 

 

The third stage involves 

determining the upper limit of the 

locating chromatic number for the new 

operation applied to the generalized 

Petersen graph. These upper limits can be 

established by constructing colorings that 

satisfy the location requirements. 

In the fourth stage, the results are 

formulated into theorems and proven.  

 

RESULT AND DISCUSSION 

 

The following theorem establishes 

the precise locating chromatic number for 

𝑁𝑃(𝑚,1). 

 

Theorems 3.1 Let 𝑁𝑃(𝑚,1) be a 

new operation of generalized Petersen 

graphs for 𝑚 ≥ 3. Then, 

 χ𝐿(𝑁𝑃(𝑚,1)) = {
4, for 𝑚 = 3
5, for 𝑚 ≥ 4

 

 

Proof. A new operation for the 

generalized Petersen graph, denoted as 

𝑁𝑃(𝑚,1). Let 𝑁𝑃(𝑚,1), for 𝑚 ≥ 3  is a 

graph with 𝑉(𝑁𝑃(𝑚,1)) = {𝑥𝑗 , 𝑥𝑚+𝑗, 

𝑦𝑗 , 𝑦𝑚+𝑗: 𝑗 ∈ {1,… ,𝑚}} and 𝐸(𝑁𝑃(𝑚,1)) 

= {𝑥𝑗𝑥𝑗+1, 𝑥𝑚+𝑗𝑥𝑚+𝑗+1, 𝑦𝑗𝑦𝑗+1, 𝑦𝑚+𝑗 

𝑦𝑚+𝑗+1 : 𝑗 ∈ {1,… ,𝑚 − 1}} ∪ {𝑥𝑚𝑥1, 

𝑥2𝑚𝑥2𝑚+1, 𝑦𝑚𝑦1, 𝑦2𝑚𝑦2𝑚+1} ∪ {𝑥𝑗𝑦𝑗 , 

𝑥𝑚+𝑗𝑦𝑚+𝑗 : 𝑗 ∈ {1,… ,𝑚}} ∪ {𝑥𝑗𝑥𝑚+𝑗  

𝑗 ∈ {1,… ,𝑚}}. We differentiate between 

two cases : 

Case 1. χ𝐿(𝑁𝑃(3,1)) = 4 

First, we will establish the lower 

limit of χ𝐿(𝑁𝑃(3,1)). Considering that the 

𝑁𝑃(3,1) loads multiple even cycles, then 

by Theorem 2.1 χ𝐿(𝑁𝑃(3,1)) ≥ 4. So 

χ𝐿(𝑁𝑃(3,1)) ≥ 4, for 𝑚 ≥ 3. 

Next, we define a 4-coloring 𝑟 of 

𝑁𝑃(3,1) as follows:  

𝑅1 = {𝑥3, 𝑥5, 𝑦6} 
𝑅2 = {𝑥5, 𝑥6, 𝑦3} 
𝑅3 = {𝑥1, 𝑦2, 𝑦4} 
𝑅4 = {𝑥1, 𝑥4, 𝑦1}. 
With the application of coloring 𝑡, we 

derive the color codes for 𝑉(𝑁𝑃(3,1)) as 

follow: 𝑡Π(𝑥1) = (1,2,0,1); 𝑡Π(𝑥2) =
(1,2,1,0); 𝑡Π(𝑥3) = (0,1,1,1); 𝑡Π(𝑥4) =
(1,1,1,0); 𝑡Π(𝑥5) = (0,1,2,1); 𝑡Π(𝑥6) =
(1,0,2,1); 𝑡Π(𝑦1) = (2,1,1,0); 𝑡Π(𝑦2) =
(2,1,0,1); 𝑡Π(𝑦3) = (1,0,1,1); 𝑡Π(𝑦4) =
(1,1,0,1); 𝑡Π(𝑦5) = (1,0,1,2);   𝑡Π(𝑦6) =  

(0,1,12). All the vertices have different 

color codes, so 𝑟 is a 4-locating coloring 

of 𝑁𝑃(3,1). Thus χ𝐿(𝑁𝑃(3,1)) ≤ 4.  

 

Case 2. χ𝐿(𝑁𝑃(𝑚,1)) = 5, for 𝑚 ≥ 4  

We differentiate between two subcases: 

Subcase 1. For even 𝑚 ≥ 4 

we will establish the lower limit 

of χ𝐿(𝑁𝑃(𝑚,1)), for even 𝑚 ≥ 4. 

Considering that 𝑁𝑃(𝑚,1) containing 

𝑃(𝑚, 1), then by Theorem 2.2 

χ𝐿(𝑁𝑃(𝑚,1)) ≥ 5. So χ𝐿(𝑁𝑃(𝑚,1)) ≥ 5, 

for even 𝑚 ≥ 4. 

Let 𝑟 be a coloring of 𝑁𝑃(𝑚,1) for 

even 𝑚 ≥ 4, the partition Π of 

𝑉(𝑁𝑃(𝑚,1)):  

𝑅1 = {𝑦1, 𝑦𝑚+1};  
𝑅2 = {𝑦𝑗|for even 𝑗, 𝑗 ∈ {2,… ,𝑚 − 2}}   

∪ {𝑥𝑗|for odd 𝑗, 𝑗 ∈ {1,… ,𝑚 − 1}} 

∪ {𝑦𝑚+𝑗|for odd 𝑗, 𝑗 ∈ {3,… ,𝑚 − 

1}} ∪ {𝑥𝑚+𝑗|for even 𝑗, 𝑗 ∈ {2, …, 

𝑚}}; 
𝑅3 = {𝑦𝑗|for odd 𝑗, 𝑗 ∈ {3, … ,𝑚 − 1}}   

∪ {𝑥𝑗|for even 𝑗, 𝑗 ∈ {2,… ,𝑚 − 2}} 

∪ {𝑦𝑚+𝑗|for even 𝑗, 𝑗 ∈ {2, … ,𝑚 −

2}} ∪ {𝑥𝑚+𝑗|for odd 𝑗, 𝑗 ∈ {1,…, 

𝑚 − 1}}; 
𝑅4 = {𝑦𝑚, 𝑦2𝑚};  
𝑅5 = {𝑥𝑚}. 
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The color codes for each vertex of 𝑉(𝑁𝑃(𝑚,1)) are: 

𝑟Π(𝑥𝑗) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑗,  for (1)𝑠𝑡component, 𝑗 ≤
𝑚

2
                                         

(𝑚 + 1 − 𝑗),  for (1)𝑠𝑡component, 𝑗 >
𝑚

2
                                          

0,  for (2)𝑛𝑑component, odd 𝑗, 𝑗 ∈ {1,… ,𝑚 − 1}       

for (3)𝑡ℎcomponent, even 𝑗, 𝑗 ∈ {2, … ,𝑚 − 2}      

for (5)𝑡ℎcomponent, 𝑗 = 𝑚                                         

(𝑗 + 1),  for (4)𝑡ℎcomponent, 𝑗 ∈ {1,… ,
𝑚

2
}                           

(𝑚 + 1 − 𝑗),  for (4)𝑡ℎcomponent, 𝑗 ∈ {
𝑚

2
+ 1,… ,𝑚}                  

𝑗,  for (5)𝑡ℎcomponent, 𝑗 ∈ {1,… ,
𝑚

2
}                           

(𝑚 − 𝑗),  for (5)𝑡ℎcomponent, 𝑗 ∈ {
𝑚

2
+ 1,… ,𝑚 − 1}          

1,  otherwise.                                                                         

  

 

𝑟Π(𝑦𝑗) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

0, for (1)𝑠𝑡component, 𝑗 = 1                                             

for (4)𝑡ℎcomponent, 𝑗 = 𝑚                                            

for (2)𝑛𝑑component, even 𝑗, 𝑗 ∈ {2,… ,𝑚 − 2}       

for (3)𝑡ℎcomponent, odd 𝑗, 𝑗 ∈ {3, … ,𝑚 − 1}          

(𝑗 − 1), for (1)𝑠𝑡component , 𝑗 ∈ {1, … ,
𝑚

2
}                              

(𝑚 + 1 − 𝑗), for (1)𝑠𝑡component, 𝑗 ∈ {
𝑚

2
+ 1,… ,𝑚}                     

𝑗, for (4)𝑡ℎcomponent, 𝑗 ∈ {1,… ,
𝑚

2
}                              

(𝑚 − 𝑗), for (4)𝑡ℎcomponent, 𝑗 ∈ {
𝑚

2
+ 1,… ,𝑚 − 1}             

(𝑗 + 1), for (5)𝑡ℎcomponent, 𝑗 ∈ {1,… ,
𝑚

2
}                              

(𝑚 + 1 − 𝑗), for (5)𝑡ℎcomponent, 𝑗 ∈ {
𝑚

2
+ 1,… ,𝑚}                    

1, otherwise.                                                                           

    

  

𝑟Π(𝑦𝑚+𝑗) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 (𝑗 − 1),  for (1)  component, 𝑗 ∈ {2, … ,

𝑚

2
}                           

(𝑚 + 1 − 𝑗),  for (1)  component, 𝑗 ∈ {
𝑚

2
+ 1,… ,𝑚}                  

0,  for (2)  component, odd 𝑗, 𝑗 ∈ {2, … ,𝑚}              

for (3)  component, even 𝑗, 𝑗 ∈ {1,… ,𝑚 − 1}     

for (1)𝑠𝑡component, 𝑗 = 1                                         

for (4)  component, 𝑗 = 𝑚                                       

𝑗,  for (4)  component, 𝑗 ∈ {1, … ,
𝑚

2
}                           

(𝑚 − 𝑗),  for (4)  component, 𝑗 ∈ {
𝑚

2
+ 1,… ,𝑚 − 1}          

(𝑗 + 2),  for (5)𝑡ℎcomponent, 𝑗 ∈ {1, … ,
𝑚

2
}                           

(𝑚 + 2 − 𝑗),  for (5)𝑡ℎcomponent, 𝑗 ∈ {
𝑚

2
+ 1,… ,𝑚 − 1}          

1,  otherwise.                                                                        
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𝑟Π(𝑥𝑚+𝑗) =

{
 
 
 
 

 
 
 
 

𝑗,  for (1)𝑠𝑡component, 𝑗 ≤
𝑚

2
                                         

(𝑚 + 2 − 𝑗),  for (1)𝑠𝑡component, 𝑗 >
𝑚

2
                                          

0,  for (2)𝑛𝑑component, odd 𝑗, 𝑗 ∈ {2,… ,𝑚}               

for (3)𝑡ℎcomponent, even 𝑗, 𝑗 ∈ {1,… ,𝑚 − 1}      

(𝑗 + 1),  for (4)𝑡ℎand (5)𝑡ℎcomponent, 𝑗 ∈ {1,… ,
𝑚

2
}         

(𝑚 + 1 − 𝑗),  for (4)𝑡ℎand (5)𝑡ℎcomponent, 𝑗 ∈ {
𝑚

2
+ 1,… ,𝑚}

1,  otherwise.                                                                         

  

 

Given that for even 𝑚, each vertex possesses a distinct color code, 𝑟 serves as a 

locating coloring for  𝑁𝑃(𝑚,1). So χ𝐿(𝑁𝑃(𝑚,1)) ≤ 5, for even  𝑚 ≥ 4. 

 

Subcase 2. For odd 𝑚 ≥ 5  

First, we will establish the lower 

limit of χ𝐿(𝑁𝑃(𝑚,1)), for odd 𝑚 ≥ 5. 

Considering that 𝑁𝑃(𝑚,1) containing 

𝑃(𝑚, 1), then by Theorem 2.2 

χ𝐿(𝑁𝑃(𝑚,1)) ≥ 4. Then, let 𝑟 be a 

locating coloring using 4 colors. It can be 

seen that the barbell graph (𝑁𝑃(𝑚,1)) has 

two points with the same color code, this 

is a contradiction. So χ𝐿(𝑁𝑃(𝑚,1)) ≥ 5, 

for odd 𝑚 ≥ 5. 

Let 𝑟 be a coloring of 𝑁𝑃(𝑚,1) for 

odd 𝑚 ≥ 5, the partition Π of 

𝑉(𝑁𝑃(𝑚,1)):  

 

𝑅1 = {𝑦1, 𝑦𝑚+1};  
𝑅2 = {𝑦𝑗|for even 𝑗, 𝑗 ∈ {2,… ,𝑚 − 1}}   

∪ {𝑥𝑗|for odd 𝑗, 𝑗 ∈ {1,… ,𝑚 − 2}} 

∪ {𝑦𝑚+𝑗|for odd  𝑗, 𝑗 ∈  {3, … ,𝑚}} 

∪ {𝑥𝑚+𝑗|for even   𝑗, 𝑗 ∈  {2, …, 

𝑚 − 1}}; 
𝑅3 = {𝑦𝑗|for odd 𝑗, 𝑗 ∈ {3,… ,𝑚}}  ∪ {𝑥𝑗| 

for even 𝑗, 𝑗 ∈ {2,… ,𝑚 − 1}} ∪ 

{𝑦𝑚+𝑗|for even  𝑗, 𝑗 ∈  {2, …𝑚 −

1}} ∪ {𝑥𝑚+𝑗|for odd 𝑗, 𝑗 ∈ {1,…, 

𝑚 − 2}}; 
𝑅4 = {𝑥𝑚};  
𝑅5 = {𝑥2𝑚}. 

 

The color codes for each vertex of 𝑉(𝑁𝑃(𝑚,1)) are: 

𝑟Π(𝑥𝑗) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑗,  for (1)𝑠𝑡component, 𝑗 ≤

(𝑚+1)

2
                                         

(𝑚 + 2 − 𝑗),  for (1)𝑠𝑡component, 𝑗 >
(𝑚+1)

2
                                          

0,  for (2)𝑛𝑑component, odd 𝑗, 𝑗 ∈ {1,… ,𝑚 − 2}              

for (3)𝑡ℎcomponent, even 𝑗, 𝑗 ∈ {2,… ,𝑚 − 1}             

for (4)𝑡ℎcomponent, 𝑗 = 𝑚                                               

𝑗,  for (4)𝑡ℎcomponent, 𝑗 ∈ {1, … ,
(𝑚−1)

2
}                            

(𝑚 − 𝑗),  for (4)𝑡ℎcomponent, 𝑗 ∈ {
(𝑚+1)

2
, … ,𝑚 − 1}                  

(𝑗 + 1),  for (5)𝑡ℎcomponent, 𝑗 ∈ {1, … ,
(𝑚−1)

2
}                            

(𝑚 + 1 − 𝑗),  for (5)𝑡ℎcomponent, 𝑗 ∈ {
(𝑚+1)

2
, … ,𝑚}                         

1,  otherwise.                                                                              
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𝑟Π(𝑦𝑗) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

0, for (1)𝑠𝑡component, 𝑗 = 1                                           

for (2)𝑛𝑑component, even 𝑗, 𝑗 ∈ {2,… ,𝑚 − 1}      

for (3)𝑡ℎcomponent, odd 𝑗, 𝑗 ∈ {3,… ,𝑚}                

(𝑗 − 1), for (1)𝑠𝑡component, 𝑗 ∈ {1, … ,
(𝑚+1)

2
}                      

(𝑚 + 1 − 𝑗), for (1)𝑠𝑡component, 𝑗 ∈ {
(𝑚+3)

2
, … ,𝑚}                    

(𝑗 + 1), for (4)𝑡ℎcomponent, 𝑗 ∈ {1,… ,
(𝑚−1)

2
}                      

(𝑚 + 1 − 𝑗), for (4)𝑡ℎcomponent, 𝑗 ∈ {
(𝑚+1)

2
, … ,𝑚}                    

(𝑗 + 2), for (5)𝑡ℎcomponent, 𝑗 ∈ {1,… ,
(𝑚−1)

2
}                      

(𝑚 + 2 − 𝑗), for (5)𝑡ℎcomponent, 𝑗 ∈ {
(𝑚+1)

2
, … ,𝑚}                    

1, otherwise.                                                                         

  

𝑟Π(𝑥𝑚+𝑗) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑗,  for (1)𝑠𝑡component, 𝑗 ≤

(𝑚+1)

2
                                       

(𝑚 + 2 − 𝑗),  for (1)𝑠𝑡component, 𝑗 >
(𝑚+1)

2
                                       

0,  for (2)𝑛𝑑component, even 𝑗, 𝑗 ∈ {2,… ,𝑚 − 1}         

for (3)𝑡ℎcomponent, odd 𝑗, 𝑗 ∈ {1,… ,𝑚 − 2}            

for (5)𝑡ℎcomponent, 𝑗 = 𝑚                                             

(𝑗 + 1),  for (4)𝑡ℎcomponent, 𝑗 ∈ {1,… ,
(𝑚−1)

2
}                          

(𝑚 + 1 − 𝑗),  for (4)𝑡ℎcomponent, 𝑗 ∈ {
(𝑚+1)

2
, … ,𝑚}                        

𝑗,  for (5)𝑡ℎcomponent, 𝑗 ∈ {1,… ,
(𝑚−1)

2
}                          

(𝑚 − 𝑗),  for (5)𝑡ℎcomponent, 𝑗 ∈ {
(𝑚+1)

2
, … ,𝑚 − 1}                

1,  otherwise.                                                                             

  

𝑟Π(𝑦𝑚+𝑗) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 (𝑗 − 1),  for (1)𝑠𝑡component, 𝑗 ∈ {2,… ,

(𝑚+1)

2
}                        

(𝑚 + 1 − 𝑗),  for (1)𝑠𝑡component, 𝑗 ∈ {
(𝑚+3)

2
, … ,𝑚}                      

0,  for (2)𝑛𝑑component, odd 𝑗, 𝑗 ∈ {3,… ,𝑚}                  

for (3)𝑡ℎcomponent, even 𝑗, 𝑗 ∈ {2,… ,𝑚 − 1}         

for (1)𝑠𝑡component, 𝑗 = 1                                             

for (5)𝑡ℎcomponent, 𝑗 = 𝑚                                           

(𝑗 + 2),  for (4)𝑡ℎcomponent, 𝑗 ∈ {1,… ,
(𝑚−1)

2
}                        

(𝑚 + 1 − 𝑗),  for (4)𝑡ℎcomponent, 𝑗 ∈ {
(𝑚+1)

2
, … ,𝑚 − 1}              

(𝑗 + 1),  for (5)𝑡ℎcomponent, 𝑗 ∈ {1,… ,
(𝑚−1)

2
}                        

(𝑚 + 1 − 𝑗),  for (5)𝑡ℎcomponent, 𝑗 ∈ {
(𝑚+1)

2
, … ,𝑚}                      

1,  otherwise.                                                                           
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Given that for even 𝑚, each vertex possesses a different color code, 𝑟 serves as a 

locating coloring of 𝑁𝑃(𝑚,1). So χ𝐿(𝑁𝑃(𝑚,1)) ≤ 5, for even  𝑚 ≥ 4. From the several cases 

above, the proof is complete.  

 

CONCLUSION 

 

This research aims to explore and 

determine the locating-chromatic number 

resulting from a new operation on the 

generalized Petersen graph. The Petersen 

graph is one of the graphs frequently used 

in graph theory studies due to its unique 

properties and wide range of applications. 

In this study, a new operation is applied 

to the generalized Petersen graph to 

observe how these changes affect the 

graph's locating-chromatic number. The 

approach used involves determining the 

upper and lower limits of the locating 

chromatic number. The outcome derived 

from this study is : 

i. χ𝐿(𝑁𝑃(3,1)) = 4 

ii. χ𝐿(𝑁𝑃(𝑚,1)) = 5, for 𝑚 ≥ 4. 

Consequently, further investigation into 

the impacts of additional operations on 

generalized Petersen graphs constitutes 

intriguing subsequent research.  
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