The Implementation of ZIP Regression and ZINB Regression to Overcome Overdispersion of Death Cases Due to Filariasis in Indonesia

Authors

  • Azizah Universitas Negeri Malang
  • Dewi Universitas Negeri Malang

DOI:

https://doi.org/10.31851/sainmatika.v20i1.11707

Keywords:

overdispersion, excess zero, Poisson regression, ZIP, ZINB

Abstract

Filariasis occurs as a result of parasitic infection by a mosquito vector. Filariasis affects the lymph and causes blood loss in the body. Filariasis is uncured. Therefore, prevention measures are needed to reduce the number of deaths. Filariasis generally does not cause death directly and rarely occurs. However, this results in an excess number of zeros in the data, which causes overdispersion. The data used were obtained from the book Indonesia Health Profile 2021, which covers the research area of Indonesia. The ZIP and ZINB regression methods were used to model the factors that affect mortality due to filariasis. Based on research conducted using ZINB regression, the results showed that the percentage of households with good sanitation has a significant effect on deaths caused by filariasis.

References

Amaliana, L., Fernandes, A. A. R., & Solimun. (2018). Comparison of Two Weighting Functions in Geographically Weighted Zero-Inflated Poisson Regression on Filariasis Data. Journal of Physics: Conference Series, 1097(1). https://doi.org/10.1088/1742-6596/1097/1/012070

Anggreainy, M. S., Illyasu, A. M., Musyaffa, H., & Kansil, F. H. (2022). Analysis of Factors Influencing the COVID-19 Mortality Rate in Indonesia using Zero Inflated Negative Binomial Model. International Journal of Advanced Computer Science and Applications, 13(4), 728–734. https://doi.org/10.14569/IJACSA.2022.0130485

Arum, K. C., Ugwuowo, F. I., & Oranye, H. E. (2022). Robust modified jackknife ridge estimator for the Poisson regression model with multicollinearity and outliers. Scientific African, 17, e01386. https://doi.org/10.1016/j.sciaf.2022.e01386

Dwi Putri, A., Devianto, D., & Yanuar, F. (2022). Pemodelan Jumlah Kematian Bayi di Kota Bandung dengan Menggunakan Regresi Zero-Inlfated Poisson. Jurnal Matematika UNAND, 11(1), 12–24.

Fávero, L. P., de Freitas Souza, R., Belfiore, P., Corrêa, H. L., & Haddad, M. F. C. (2021). Count Data Regression Analysis: Concepts, Overdispersion Detection, Zero-inflation Identification, and Applications with R. Practical Assessment, Research and Evaluation, 26, 1–22. https://doi.org/10.7275/44nn-cj68

Ginzel, M. D. C., Saefuddin, A., & Erfiani. (2020). Determination of Extracurricular Activities for High School Students Based on Multiple Intelligence. Journal of Statistics, 9.

Jansakul, N., & Hinde, J, P. (2002). Score Tests for Zero-Inflated Models. Computational Statistics and Data Analysis, 40, 75–96.

Kementerian Kesehatan Republik Indonesia. (2021). Profil Kesehatan Indonesia Tahun 2021. In Pusdatin.Kemenkes.Go.Id.

Kusuma, W., Komalasari, D., & Hadijati, M. (2013). Model Regresi Zero Inflated Poisson Pada Data Overdispersion. 3(2).

Lambert, D. (1992). Zero-Inflated Poisson Regression, With an Application to Defects in Manufacturing. American Statistical Association and the American Society for Quality Control, Vol. 34, N.

Luciani Rahayu, R., Asrof, A., Rustiana, S., Puspitasari, W., & Suparman, Y. (2018). Perbandingan Regresi Zero Inflated Negatif Binomial dan Regresi Hurdle Negatif Binomial pada Data Overdispersi (Studi Kasus: Kejadian Difteri di Indonesia). Jurnal Sains Matematika Dan Statistika, 4(1).

Maulida Layli, F., Sakundarno Adi, M., Dian Saraswati, L., & Ginandjar, P. (2020). Gambaran Faktor-Faktor Kepatuuhan Minum Obat Dalam Pelaksanaan POPM di Kabupaten Semarang (Studi di Wilayah Kerja Puskesmas Gedangan Kecamatan Tuntang). Jurnal Kesehatan Masyarakat, 8(75), 147–154. https://doi.org/10.1016/j.jnc.2020.125798%0Ahttps://doi.org/10.1016/j.smr.2020.02.002%0Ahttp://www.ncbi.nlm.nih.gov/pubmed/810049%0Ahttp://doi.wiley.com/10.1002/anie.197505391%0Ahttp://www.sciencedirect.com/science/article/pii/B9780857090409500205%0Ahttp:

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Model. London: Chapman and Hill.

Pramono, M. S., Maryani, H., & Wulandari, S. P. (2014). Analysis of Filariasis Through Zero Inflated Poisson (ZIP) Regression Approach. Buletin Penelitian Sistem Kesehatan, 17(1). https://doi.org/10.22435/bpsk.v17i1 Jan.3573

Rahmi, I. R., Sutiningsih, D., Hestiningsih, R., & Saraswati, L. D. (2022). Faktor-Faktor yang Berhubungan dengan Kasus Filariasis di Indonesia : Sistematik Review. Jurnal Epidemiologi Kesehatan Komunitas, 7(2), 501–521. https://doi.org/10.14710/jekk.v7i2.11515

Sa’diyah, N. K., Astuti, A. B., & Mitakda, M. B. T. (2022). Simulation Study of Bayesian Hurdle Poisson Regression on the Number of Deaths from Chronic Filariasis in Indonesia. Mathematics and Statistics, 10(3), 603–609. https://doi.org/10.13189/ms.2022.100316

Setiaji, et al. (2021). Profil Kesehatan Indonesia. Retrieved May 1, 2022, from https://www.kemkes.go.id/downloads/resources/download/pusdatin/profil-kesehatan-indonesia/Profil-Kesehatan-2021.pdf

Taufan, M., Suparti, & Rusgiyono, A. (2012). Analisis Faktor- Faktor yang Mempengaruhi Banyaknya Klaim Asuransi Kendaraan Bermotor Menggunakan Model Regresi Zero-Inflated Poisson (Studi Kasus di PT. Asuransi Sinar Mas Cabang Semarang Tahun 2010). 5, 49–61.

Zahro, J., Caraka, R. E., & Herliansyah, R. (2018). Aplikasi Generalized Linear Model pada R (Issue July).

Downloads

Published

2023-06-30