Physics Visualization of Schwarzschild Black Hole through Graphic Representation of the Regge-Wheeler Equation using R-Studio Approach
DOI:
https://doi.org/10.31851/sainmatika.v20i1.11845Keywords:
Visualization, Implementation, Regge-Wheeler Equation in Schwarzschild, Black Hole Physics, Cartesian CoordinatesAbstract
This study aims to visualize the vibrations of black holes using the Regge-Wheeler equation in Cartesian coordinates. Black holes are astrophysical objects with extremely strong gravity, and understanding the vibrations around them provides insights into the nature and structure of black holes. The Regge-Wheeler equation is used to model these vibrations. In this study, the goal is to generate visual images that visualize the vibrations of black holes, including their frequencies, amplitudes, and possible vibration modes. Complex mathematical and computational methods were employed to create these visualizations. The findings of this research result in an intuitive and accurate visualizations of black hole vibrations. By observing the patterns and distributions of vibrations in visual form, complex concepts can be more easily understood and interpreted. These visualizations provide a better understanding of the characteristics of black hole vibrations and can serve as learning and comprehension tools for scientists and researchers. The accomplishment of this research addresses a deficiency in prior studies that lacked informative and intuitive visualizations of black hole vibration phenomena. The visualizations produced in this study make a significant contribution to our understanding of black hole vibration phenomena. The enhanced visualizations allow researchers to perceive patterns and distributions of vibrations more clearly, paving the way for new insights into the nature of black holes. The implications of this research are an improved understanding of black hole vibrations and a broader dissemination of knowledge about this phenomenon to the general public. The generated images can help communicate complex concepts more effectively, enhancing awareness and interest in black hole research.
References
Alfaris, L., Siagian, R. C., & Sumarto, E. P. (2023). Study Review of the Speed of Light in Space-Time for STEM Student. Jurnal Penelitian Pendidikan IPA, 9(2), 509–519, DOI: 10.29303/jppipa.v9i2.2757.
Fortuna, S., & Vega, I. (2022). Electromagnetic quasinormal modes of Schwarzschild–anti–de Sitter black holes: Bifurcations, spectral similarity, and exact solutions in the large black hole limit. Physical Review D, 106(8), 084028, DOI: 10.1103/PhysRevD.106.084028.
Giorgi, E. (2022). Electromagnetic-gravitational perturbations of Kerr–Newman spacetime: The Teukolsky and Regge–Wheeler equations. Journal of Hyperbolic Differential Equations, 19(01), 1–139.
Grumiller, D., & Sheikh-Jabbari, M. M. (2022). Probing Black Holes, Their Formation and Stability. Dalam Black Hole Physics: From Collapse to Evaporation (hlm. 119–145). Springer.
Hess, P. O., & López‐Moreno, E. (2019). Regge–wheeler and zerilli equations within a modified theory of general relativity. Astronomische Nachrichten, 340(1–3), 89–94.
Inglis, M. (2023). Black Holes. Dalam Astrophysics Is Easy! (hlm. 313–329). Springer.
MISBAH, M. (t.t.). Teori Relativitas, https://repo-dosen.ulm.ac.id/handle/123456789/27802.
Misbah, M. (2022). Persamaan Differensial Matematika Fisika, https://repo-dosen.ulm.ac.id/bitstream/handle/123456789/26248/Cover-Persamaan_Differensial_Matematika_Fisika_Ebook-min1.pdf?sequence=1&isAllowed=y.
Siagian, R. C., Alfaris, L., Muhammad, A. C., Mamou, A. E., Rancak, G. T., Nyuswantoroe, U. I., Nurahman, A., & Sumarto, E. P. (t.t.). Pengantar Matematika Geometri Lubang Hitam. wawasan Ilmu, https://www.researchgate.net/publication/371607725_PENGANTAR_MATEMATIKA_GEOMETRI_LUBANG_HITAM.
Siagian, R. C., Alfaris, L., Muhammad, A. C., Nyuswantoro, U. I., & Rancak, G. T. (2023). The Orbital Properties of Black Holes: Exploring the Relationship between Orbital Velocity and Distance. Journal of Physics and Its Applications, 5(2), 35–42. https://doi.org/10.14710/jpa.v5i2.17860
Siagian, R. C., Alfaris, L., Nurahman, A., & Sumarto, E. P. (2023). Termodinamika Lubang Hitam: Hukum Pertama dan Kedua serta Persamaan Entropi. Jurnal Kumparan Fisika, 6(1), 1–10. https://doi.org/10.33369/jkf.6.1.1-10, https://doi.org/10.33369/jkf.6.1.1-10.
Siagian, R. C., Pribadi, P., Sinaga, G. H. D., Nurahman, A., & Nasution, B. (2023). Statistical Data Retrieval Technique in Astronomy Computational Physics. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 10(1), https://jurnal.mdp.ac.id/index.php/jatisi/article/view/4712.
Sinaga, G. H. D., Panjaitan, M. B., Siagian, R. C., & Siahaan, K. W. A. (t.t.). Memahami Indahnya Semesta dengan Dasar Teori Kosmologi dan Astronomi Fisika Serta Sejarahnya. Penerbit Widina.
Thorne, K. S. (t.t.). Introduction to Regge and Wheeler “Stability of a Schwarzschild Singularity.”
Viaggiu, S. (2022). On the perturbative formalism and a possible quantum Discrete spectrum for the Regge–Wheeler equation of a De Sitter spacetime. International Journal of Geometric Methods in Modern Physics, 19(12), 2250189, https://doi.org/10.1142/S0219887822501894.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.