The Locating Chromatic Number for Pizza Graphs
DOI:
https://doi.org/10.31851/sainmatika.v20i2.13085Keywords:
Location Chromatic Number, Pizza Graph, Color CodeAbstract
The location chromatic number for a graph is an extension of the concepts of partition dimension and vertex coloring in a graph. The minimum number of colors required to perform location coloring in graph G is referred to as the location chromatic number of graph G. This research is a literature study that discusses the location chromatic number of the Pizza graph. The approach used to calculate the location-chromatic number of these graphs involves determining upper and lower bounds. The results obtained show that the location chromatic number of the pizza graph is 4 for n = 3 and n for ≥ 4.
References
Asmiati, Sadha Gunce Yana, I. K., & Yulianti, L. (2018). On the Locating Chromatic Number of Certain Barbell Graphs. International Journal of Mathematics and Mathematical Sciences, 2018, 1–5. https://doi.org/10.1155/2018/5327504
Behtoei, A. (2011). The Locating Chromatic Number of the Join of Graphs. http://arxiv.org/abs/1112.2357
Bhatti, U. A., Tang, H., Wu, G., Marjan, S., & Hussain, A. (2023). Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence. International Journal of Intelligent Systems, 2023, 1–28. https://doi.org/10.1155/2023/8342104
Chartrand, G., Erwin, D., Henning, M. A., Slater, P. J., & Zhang, P. (2002). The locating-chromatic number of a graph. Bull. Inst.Combin. Appl., 36, 89–101.
Harary, F., & Melter, R. A. (1976). On the Metric Dimension of a Graph. Ars Combinatoria, 2, 191–195.
Nabila, S., & Salman, A. N. M. (2015). The Rainbow Connection Number of Origami Graphs and Pizza Graphs. Procedia Computer Science, 74, 162–167. https://doi.org/10.1016/j.procs.2015.12.093
Rahmatalia, S., Asmiati, A., & Notiragayu, N. (2022). Bilangan Kromatik Lokasi Graf Split Lintasan. Jurnal Matematika Integratif, 18(1), 73. https://doi.org/10.24198/jmi.v18.n1.36091.73-80
Surbakti, N. M. (2023). ALGORITMA WELCH POWELL PADA PENJADWALAN SEMINAR PROPOSAL SKRIPSI DI PROGRAM STUDI MATEMATIKA UNIVERSITAS NEGERI MEDAN IMPLEMENTATION OF GRAPH COLORING USING THE WELCH POWELL ALGORITHM IN SCHEDULING THESIS PROPOSAL SEMINARS IN THE MATHEMATICS STUDY PROGRAM. Jurnal Deli Sains Informatika, 2(2).
Surbakti, N. M., & Ramadhani, F. (2022). Implementation of the Greedy Algorithm for Coloring Graph Based on Four-Color Theorem. Sudo Jurnal Teknik Informatika, 1(4), 178–182. https://doi.org/10.56211/sudo.v1i4.157
Welyyanti, D., Yanita, Silvia, M., & Apriliza, T. (2023). On locating-chromatic number for certain lobster graph. 040058. https://doi.org/10.1063/5.0127214
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.