Numerical Simulation of Run-Up Wave Using Nonlinear Shallow Water Equations with Staggered Grid at Canti Beach, South Lampung

Authors

  • Dear Michiko Mutiara Noor Department of Mathematics, Faculty of Science, Institut Teknologi Sumatera, Lampung, Indonesia
  • Maya Himmah Faiqoh Department of Mathematics, Faculty of Science, Institut Teknologi Sumatera, Lampung, Indonesia
  • Rifky Fauzi Department of Mathematics, Faculty of Science, Institut Teknologi Sumatera, Lampung, Indonesia

DOI:

https://doi.org/10.31851/sainmatika.v21i2.16068

Keywords:

Tsunami, run up, shallow water equations, finite difference, staggered grid

Abstract

Tsunamis, wave triggered by underwater earthquakes or volcanic eruptions, can achieve significant run-up heights upon reaching shore. Run-up refers to the maximum vertical distance a tsunami wave reaches above the normal sea level. This study employs a numerical model to simulate the run-up wave at Canti Beach, South Lampung Regency, during the 2018 Sunda Strait tsunami. The method approximates solutions to the shallow water model consisting of mass and momentum conservation equations using the finite difference method in staggered grid grids and incorporates the upwind method for nonlinear terms. Bathymetry data from GEBCO was projected in two dimensions using the haversine formula. The numerical scheme includes a wet-dry procedure for simulating run-up waves. Results indicate that waves with a 60-second period and 0.09-meter amplitude create a 40.0195-meter inundation area, although this amplitude is significantly lower than the observed data from the 2018 Sunda Strait tsunami. Additionally, a simulation with a 0.1-meter amplitude results in a 1.8299-meter run-up height, closely matching the observed data. This study demonstrates that nonlinear shallow water equations can effectively estimate run-up height and inundation area at Canti Beach.

References

Adytia, D., & Yuninda, A. P. (2020). Pendekatan numerik disipasi gelombang reguler oleh hutan mangrove menggunakan model dispersif boussinesq. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 12(1), 53–67. https://doi.org/10.29244/jitkt.v12i1.26328

Arifin, A. Z. (2021). Simulasi Dampak Penghalang pada Gelombang Tsunami Menggunakan Persamaan Air Dangkal dengan Metode Beda Hingga. Jambura Journal of Mathematics, 3(2), 93–102. https://doi.org/10.34312/jjom.v3i2.10068

Azdy, R. A., & Darnis, F. (2020). Use of haversine formula in finding distance between temporary shelter and waste end processing sites. Journal of Physics: Conference Series, 1500(1), 012104. https://doi.org/10.1088/1742-6596/1500/1/012104

Busayo, E. T., & Kalumba, A. M. (2020). Coastal Climate Change Adaptation and Disaster Risk Reduction: A Review of Policy, Programme and Practice for Sustainable Planning Outcomes. Sustainability, 12(16), 6450. https://doi.org/10.3390/su12166450

Campbell, J. R. (2022). From the Frying Pan into the Fire? Climate Change, Urbanization and (In)Security in Pacific Island Countries and Territories. Peace Review, 1–11. https://doi.org/10.1080/10402659.2022.2023425

Cummins, P. R., Pranantyo, I. R., Pownall, J. M., Griffin, J. D., Meilano, I., & Zhao, S. (2020). Earthquakes and tsunamis caused by low-angle normal faulting in the Banda Sea, Indonesia. Nature Geoscience, 13(4), 312–318. https://doi.org/10.1038/s41561-020-0545-x

Fauzi, R., & Wiryanto, L. H. (2017). On the staggered scheme for shallow water model down an inclined channel. AIP Conference Proceedings. https://doi.org/10.1063/1.4994405

Fauzi, R., & Wiryanto, L. H. (2021). Momentum conservative scheme for simulating granular landslide over an inclined rigid bed. Advances and Applications in Fluid Mechanics, 27(1), 37–45. https://doi.org/10.17654/fm027010037

Fauzi, R., & Wiryanto, L. H. (2023). Numerical simulation of granular landslide using predictor-corrector method. AIP Conference Proceedings. https://doi.org/10.1063/5.0166775

Goyman, G. S., & Shashkin, V. V. (2021). Horizontal approximation schemes for the staggered reduced latitude-longitude grid. Journal of Computational Physics, 434, 110234–110234. https://doi.org/10.1016/j.jcp.2021.110234

Sabara, Z., Umam, R., Prianto, K., Junaidi, R., & Rahmat, A. (2021). Anak Krakatau mountain (AKM) causes a rare tsunami phenomenon: Impact around the Sunda Strait, Indonesia. IOP Conference Series: Earth and Environmental Science, 739(1), 012036. https://doi.org/10.1088/1755-1315/739/1/012036

Sianturi, G. S., & Fauzi, R. (2023). Pemodelan kedalaman laut pada perairan selat sunda dan sekitarnya menggunakan neural network. Prosiding Seminar Nasional Sains Dan Teknologi “SainTek,” 1(1), 1–11. https://conference.ut.ac.id/index.php/saintek/article/view/2285

Sri Redjeki Pudjaprasetya. (2018). Transport Phenomena, equations, and numerical methods. INA-Rxiv (OSF Preprints). https://doi.org/10.31227/osf.io/5vw73

Sugiarto, A., Rudianto, & Somali, L. (2018). Laporan survey tsunami selat sunda wilayah Lampung.

Tiwi, D. A., N Sudiana, None Prihartanto, I Turyana, F Prawiradisastra, Q Zahro, & None Astisiasari. (2023). Post-disaster rapid assessment of Sunda Strait tsunami on 24–25 December 2018 in the regencies of serang and Pandeglang, province of Banten, Indonesia. IOP Conference Series. Earth and Environmental Science, 1173(1), 012015–012015. https://doi.org/10.1088/1755-1315/1173/1/012015

Tursina, Syamsidik, Kato, S., & Afifuddin, M. (2021). Coupling sea-level rise with tsunamis: Projected adverse impact of future tsunamis on Banda Aceh city, Indonesia. International Journal of Disaster Risk Reduction, 55, 102084. https://doi.org/10.1016/j.ijdrr.2021.102084

Wang, X., Qiao, D., Jin, L., Yan, J., Wang, B., Li, B., & Ou, J. (2023). Numerical investigation of wave run-up and load on heaving cylinder subjected to regular waves. Ocean Engineering, 268, 113415. https://doi.org/10.1016/j.oceaneng.2022.113415

Downloads

Published

2024-12-16