Pelabelan Harmonis Ganjil pada Graf Ular Jaring Berlipat
DOI:
https://doi.org/10.31851/sainmatika.v17i1.3182Keywords:
net graph, odd harmonious graph, odd harmonious labeling, pleated graph, snake graphAbstract
Graphs that have odd harmonious labeling properties are called odd harmonious graphs. The purpose of this study to obtain a new graph class construction with its properties, but also to prove that the new graph class has odd harmonious labeling properties. The research method used consisted of several steps namely data research preparations, research investigations and verification of results. The results of this study, we will provide a construction of a new graph class, that is, the pleated net snake graph and its properties. Furthermore, it will be proven that the pleated net snake graph has odd harmonious labeling properties, so that the pleated net snake graph is an odd harmonious graph.
References
Firmansah, F. (2016). Pelabelan Harmonis Ganjil pada Gabungan Graf Ular dan Graf Ular Berlipat. Konferensi Nasional Penelitian Matematika Dan Pembelajarannya (KNPMP I)an , 809–818. Retrieved from https://publikasiilmiah.ums.ac.id/bitstream/handle/11617/7026/88_4_Makalah Rev Fery Firmansah.pdf?sequence=1&isAllowed=y
Firmansah, F. (2017). The Odd Harmonious Labeling on Variation of the Double Quadrilateral Windmill Graphs. Jurnal ILMU DASAR, 18(2), 109. https://doi.org/10.19184/jid.v18i2.5648
Firmansah, F., & Syaifuddin, M. W. (2018a). Pelabelan Harmonis Ganjil pada Amalgamasi Graf Kincir Angin Belanda. Fibonacci Jurnal Matematika Dan Pendidikan Matematika. https://doi.org/https://doi.org/10.24853/fbc.4.1.37-46
Firmansah, F., & Syaifuddin, M. W. (2018b). Pelabelan Harmonis Ganjil pada Amalgamasi Graf Kincir Angin Double Quadrilateral. Seminar Nasional Pendidikan Matematika Ahmad Dahlan, 6. Retrieved from http://seminar.uad.ac.id/index.php/sendikmad/article/view/402
Firmansah, F., & Tasari. (2020). Odd Harmonious Labeling on Edge Amalgamation from Double Quadrilateral Graphs. Desimal: Jurnal Matematika, 3(1), 65–72. https://doi.org/10.24042/djm.v3i1.5712
Firmansah, F., & Yuwono, M. R. (2017a). Odd Harmonious Labeling on Pleated of the Dutch Windmill Graphs. Cauchy Jurnal Matematika Murni Dan Aplikasi, 4(4), 161–166. https://doi.org/10.18860/ca.v4i4.4043
Firmansah, F., & Yuwono, M. R. (2017b). Pelabelan Harmonis Ganjil pada Kelas Graf Baru Hasil Operasi Cartesian Product. Jurnal Matematika Mantik, 3(2), 87–95. https://doi.org/10.15642/mantik.2017.3.2.87-95
Gallian, J. A. (2019). A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 18.
Jeyanthi, P., Philo, S., & Siddiqui, M. K. (2019). Odd harmonious labeling of super subdivision graphs. Proyecciones, 38(1), 1–11. https://doi.org/10.4067/S0716-09172019000100001
Jeyanthi, P., Philo, S., & Sugeng, K. A. (2015). Odd harmonious labeling of some new families of graphs. SUT Journal of Mathematics. https://doi.org/10.1016/j.endm.2015.05.024
Jeyanthi, P., Philo, S., & Youssef, M. Z. (2019). Odd harmonious labeling of grid graphs. Proyecciones, 38(3), 412–416. https://doi.org/10.22199/issn.0717-6279-2019-03-0027
Liang, Z., & Bai, Z. (2009). On The Odd Harmonious Graphs with Applications. J. Appl. Math. Comput., 29, 105–116.
Renuka, J., & Balaganesan, P. (2018). Odd harmonious labeling of some classes of cycle related graphs. Indian Journal of Public Health Research and Development, 9(9), 403–408. https://doi.org/10.5958/0976-5506.2018.01032.X
Saputri, G. A., Sugeng, K. A., & Froncek, D. (2013). The odd harmonious labeling of dumbbell and generalized prism graphs. AKCE International Journal of Graphs and Combinatorics, 10(2), 221–228.