Aktivitas Pelapukan Kayu Inokulum Ganoderma boninense pada Tumpangsari Bibit Kelapa Sawit dan Talas-Talasan

Monica Alesia, Suwandi Suwandi, Suparman Suparman

Abstract


Basal stem rot of oil palm caused by Ganoderma boninense is difficult to be controlled due to abundance of inoculum sources in the field. This study was aimed to determined effects of taro plants viz. Belitung taro (Xanthosoma sagittifolium), Bogor taro (Colocasia esculenta), and Japanese taro (Colocasia esculenta var. antiquorum) on decay of G. boninense inocula. Pathogen inocula as rubber wood block (RWB) colonized by G. boninense was attached with main roots of oil palm seedling and buried into soil of oil palm seedling (monoculture), mixed planting of oil palm and taro plants, or of taro plants monoculture. Burying of pathogen inocula for 3 and 6 months on taro plant resulted in 2.1 times higher decay of RWB compared than oil palm monoculture. Increasing of decay also exhibited on mixed cropping system, but it was slightly lower than on oil palm monoculture. This result suggesting the benefit of taro plants either planted under monoculture or mixed cropping to fasten decomposition of infected wood debris as an inoculum source of G. boninense.


Keywords


oil palm, taro plants, mixed planting, Ganoderma boninense, wood decay

Full Text:

PDF

References


Abrahao A, Heloisa MBF, Janiere P, Debora RPM, Gabriela L, Jose MBF, Jose P, Edeltrudes OL. (2016). In vitro anti-Candida activity and mechanism of action of the flavonoid isolated from Praxelis clematidea against Candida albicans species. Journal of Applied Pharmaceutical Science, 6, 66-69. DOI: 10.7324/JAPS.2016.600111.

Basyuni, M, A Purba, L A P Putri, R Hayati, D Chalil, dan I Syahputra. (2019). Bioinformatics analysis of predicted Ganoderma boninense from oil palm (Elaeis guineensis). Journal of Physics, 1235, 11-17. DOI: 10.1088/1742-6596/1235/1/012071.

Carll, C. G., & Highley, T. L. (1999). Decay of wood and wood-based products above ground in buildings. Journal of Testing and Evaluation, 27(2), 150-158.

Deacon, J. (2005). Fungal biology, A textbook. Cornwell, England: Blackwell Publishing.

Flood, J. et al. (2010). Some latest R & D on Ganoderma diseases in oil palm. In Proceedings of the Second International Seminar Oil Palm Diseases-Advances in Ganoderma Research and Management, Yogyakarta, Indonesia, 31st May 2010:1-21.

Fowotade, S. A., Yusof, N.A., Abdullah, J., Sulaiman, Y. dan Abd Rahman, S.F. (2019). Enhanced electrochemical sensing of secondary metabolites in oil palms for early detection of Ganoderma boninense based on novel nanoparticle-chitosan functionalized multi-walled carbon nanotube platform. Sensing and Bio-Sensing Research, 23:100-274. DOI: 10.1016/j.sbsr.2019.100274.

Freiesleben, S.H. dan Jäger, A. (2014). Correlation between plant secondary metabolites and their antifungal mechanisms-A review. Medicinal and Aromatic Plants 3, 1-6.

Hattaka A. (2005). Environmental biotechnology and biotechnology of natural resources. In Proceedings of the Scanbalt Meeting; Helsinki, 31 Okt 2005. Helsinki Microbiology Ociety: 1078-1092.

Ho, P.Y., Namasivayam, P., Sundram, S. dan Ho, C.L. (2020). Expression of Genes Encoding Manganese Peroxidase and Laccase of Ganoderma boninense in Response to Nitrogen Sources, Hydrogen Peroxide and Phytohormones. Genes, 11(11), 1263.

Hushiarian, R., Yusof, N.A. dan Dutse, S.W. (2013). Detection and control of Ganoderma boninense: strategies and perspectives. SpringerPlus, 2(1), 1-12.

Lelong, C.C., Roger, J.M., Brégand, S., Dubertret, F., Lanore, M., Sitorus, N.A., Raharjo, D.A. dan Caliman, J.P. (2010). Evaluation of oil-palm fungal disease infestation with canopy hyperspectral reflectance data. Sensors, 10(1): 734-747. DOI: 10.3390/s100100734.

Li L, Sun J, Xia S, Tian X, Cheserek MJ, Le G. (2016). Mechanism of Antifungal Activity of Antimicrobial Peptide APP, A Cell-Penetrating Peptide Derivative, Against Candida albicans: Intracellular DNA Binding and Cell Cycle Arrest. Applied microbiology and biotechnology, 100, 3245-3253.

Liaghat, S., Ehsani, R., Mansor, S., Shafri, H.Z., Meon, S., Sankaran, S. dan Azam, S.H. (2014). Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. International Journal of Remote Sensing, 35(10), 3427-3439. DOI: 10.1080/01431161.2014.903353.

Mengane SK. (2015). Antifungal activity of the crude extracts of Colocasia esculenta leaves in vitro on plant pathogenic fungi. Int Res J Pharm, 6, 713-714.

Miller RNG, Holderness M, Bridge PD, Chung GF, Zakaria MH. (1999). Genetic diversity of Ganoderma in oil palm plantings. Plant Pathol, 48, 595-603.

Naidu, Y., Siddiqui, Y., Rafii, M.Y., Saud, H.M. dan Idris, A.S. (2017). Investigating the effect of white-rot hymenomycetes biodegradation on basal stem rot infected oil palm wood blocks: Biochemical and anatomical characterization. Industrial Crops and Products, 108, 872-882.

Nildayanti. (2011). Peran Bakteri Kitinolitik dan Fungi Mikoriza Arbuskular dalam Pengendalian Busuk Pangkal Batang Kelapa Sawit [Tesis]. Bogor: Sekolah Pasca Sarjana, Institut Pertanian Bogor.

Ohiwal, M., Widyastuti, R. dan Sabiham, S. (2017). Populasi Mikrob Fungsional pada Rhizosfer Kelapa Sawit di Lahan Gambut Riau. Jurnal Ilmu Tanah dan Lingkungan, 19(2), 74-80.

Paterson RRM. (2007). Ganoderma disease of oil palm-A white rot perspective necessary for integrated control. Crop Prot, 26(9), 1369-1376.

Perez J, Muñoz-Dorado J, De-la-Rubia T, Martínez J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol, 5, 53-63.

Rahmadhani, T.P., Suwandi Suwandi, Suparman Suparman. (2020). Growth responses of oil palm seedling inoculated with Ganoderma boninense under competition with edible herbaceous plants. Journal of Scientific Agriculture, 4, 45-49. DOI: 10.25081/jsa.2020.v4.6231.

Ratnaningtyas, N.I. dan Samiyarsih, S. (2012). Karakterisasi Ganoderma spp. di Kabupaten Banyumas dan Uji Peran Basidiospora dalam Siklus Penyakit Busuk Batang. Majalah Ilmiah Biologi BIOSFERA: A Scientific Journal, 29(1), 36-41.

Riah. (2014). Keaweatan Alami Kayu Meranti Merah (Shorea leprosula) Hutan Alam dan Hutan Tanaman dari Serangan Jamur Pelapuk Kayu. Jurnal Hutan Lestari, 2(1).

Santoso, H., Tani, H., dan Wang, X. (2017). Random Forest classification model of basal stem rot disease caused by Ganoderma boninense in oil palm plantations. International Journal of Remote Sensing, 38(16), 4683-4699. DOI:10.1080/01431161.2017.1331474.

Santoso, H., Tani, H., Wang, X., Prasetyo, A. E., & Sonobe, R. (2018). Classifying the severity of basal stem rot disease in oil palm plantations using WorldView-3 imagery and machine learning algorithms. International Journal of Remote Sensing, 00(00), 1-23. DOI:10.1080/01431161.2018.1541368.

Volk, T. (2000). Polypore primer: An introduction to the characters used to identify poroid wood decay fungi. McIlvainea, 14(2), 74-82.

Yulianti, Sika, Suwandi Suwandi, dan Nurhayati Nurhayati. (2017). Kemampuan tumbuhan terna dalam menekan potensi inokulum Rigidoporus microporus. Jurnal Fitopatologi Indonesia, 13, 81-88. DOI: 10.14692/jfi.13.3.81.




DOI: http://dx.doi.org/10.31851/sainmatika.v17i3.5737

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam p-ISSN 1829-586X (print), e-ISSN 2581-0170 (online)

Sainmatika:
Fakultas Sains dan Teknologi Universitas PGRI Palembang
Jl. Ahmad Yani Lrg. Gotong Royong 9/10 Ulu Palembang 30251
e-mail: sainmatika@univpgri-palembang.ac.id

Creative Commons License
Sainmatika: Jurnal Ilmiah Matematika dan ilmu Pengetahuan Alam by https://jurnal.univpgri-palembang.ac.id/index.php/sainmatika/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.