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ABSTRACT
The hyper-redundant type of robot is a type of robot that in carrying out its duties in the field of kinematics its degrees of freedom exceed the required minimum degrees. The advantage will be increased capability in operation and performance, if the degrees of freedom are excessive, even in unorganized and complex systems and environments. Algebraic approach method in inverse kinematics algorithm analysis can use; analytic algebra, jacobian basis, analytic KI, exponential multiplication, grobner, and conformal geometry. Iterative approach method in inverse kinematics algorithm analysis can use; genetic algorithm, fuzzy logic, ANFIS, and evolutionary algorithm. The geometric approach method in the inverse kinematics algorithm analysis can use; capital method. The purpose of this study is to analyze a virtual 2 arm robot, which will use axis manipulation in three dimensions using an inverse kinematics solution, using a geometric approach. How to step along on the z axis by rotating and using the reverse kinematics solution to the desired location. The visualization results will be repeated so as to ensure the effectiveness of the algorithm. As for this algorithm will provide a single solution, and this algorithm will prevent and reduce singularities if the link is lower.
Keywords: Robot arm analiysis, hyper-redundant robot, Mathlab software
ABSTRAK

Robot jenis hyper-redundant adalah jenis robot yang dalam menjalankan tugasnya di bidang kinematika derajat kebebasannya melebihi derajat minimum yang dipersyaratkan. Keuntungan akan meningkatkan kemampuan dalam operasi dan kinerja, jika derajat kebebasannya berlebihan, bahkan dalam sistem dan lingkungan yang tidak terorganisir dan kompleks. Metode pendekatan aljabar dalam analisis algoritma kinematika terbalik dapat menggunakan; aljabar analitik, basis jacobian, KI analitik, perkalian eksponensial, grobner, dan geometri konformal. Metode pendekatan iteratif dalam analisis algoritma kinematika invers dapat menggunakan; algoritma genetika, logika fuzzy, ANFIS, dan algoritma evolusioner. Metode pendekatan geometrik dalam analisis algoritma kinematika terbalik dapat menggunakan; metode modal. Tujuan dari penelitian ini adalah untuk menganalisis robot 2 lengan secara virtual, yang akan menggunakan manipulasi sumbu dalam tiga dimensi menggunakan solusi kinematika terbalik, dengan menggunakan pendekatan geometris. Bagaimana langkah bersama pada sumbu z dengan memutar dan menggunakan solusi kinematika terbalik ke lokasi yang diinginkan.  Hasil visualisasi akan diulangi sehingga dapat menjamin efektivitas algoritma. Adapun algoritma ini akan memberikan solusi tunggal, dan algoritma ini akan mencegah dan mengurangi singularitas jika linknya lebih rendah. 
Kata Kunci: Analisis lengan robot, robot hiper-redundan, perangkat lunak Mathlab
INTRODUCTION
The hyper-redundant type of robot is a type of robot that in operating its duties in kinematics its degrees of freedom exceed the minimum required degrees (Chirikjian & Burdick, 1994). The advantages of this will increase an ability in operation and performance, if the degrees of freedom are excessive, even in an unorganized and complex system and environment (Harbourne & Stergiou, 2009). This type is very useful in various fields of science, for example, such as; military and industrial sectors.

In applications, such as emergencies, this type of robot can be applied effectively, because it can also regulate; cleaning the wrong and dirty things in the engine, inspection of road connections, inspection of space shuttles, as well as nuclear power plants. Then a workflow, or algorithm in the robot is needed which aims to ensure the accuracy, and efficacy of the system to be run (Guo et al., 2017). The type of inverse kinematics algorithm is an algorithm to be tested, this algorithm is very important in analyzing robot control, because it can analyze redundant manipulators, and can determine the final position and orientation of the effector, but an important factor is needed in this analysis, namely the variables needed actuator (Nearchou, 1998). The inverse kinematics method can be classified based on the method, namely, among others; iterative approach, geometric approach, and algebraic approach (Tejomurtula & Kak, 1999).

The algebraic approach method in the analysis of inverse kinematics algorithms (Wei et al., 2014) can use; analytical algebra, jacobian basis, analytical KI, exponential multiplication, grobner, and conformal geometry. The iterative approach method in inverse kinematics algorithm analysis (Manseur & Doty, 1988) can use; genetic algorithms, fuzzy logic, ANFIS, and evolutionary algorithms. The method of geometric approach in the analysis of the inverse kinematics algorithm can use; capital method (Zamanzadeh & Ahmadi, 2021).

Unfortunately the computational burden will be heavy if using symbolic expansion (Sessler & Jondral, 2005), in the algebraic approach, the other drawback is that there is no clear indication in the optimal solution (Parrilo, 2003), even though in different arm configurations there are several potential solutions (Noor et al., 2020). However, the computation time will be more significant if using an iterative method, but if it comes to the inverse kinematics solution it will take a long time (Beeson & Ames, 2015). so to take the unique manipulator structure to find the angle can use the geometric heuristic on the geometric approximation (Chirikjian & Burdick, 1994), which will give a direct solution.

The purpose of this study is to analyze a 2-arm robot virtually (Pierrot et al., 1999), which will use axis manipulation in three dimensions using an inverse kinematics solution, using a geometric approach (Mohamed et al., 2009).
RESEARCH METHOD
The algebraic approach method in the analysis of inverse kinematics algorithms (Wei et al., 2014) can use; analytical algebra, jacobian  basis, analytical KI, exponential multiplication, grobner, and conformal geometry. The iterative approach method in inverse kinematics algorithm analysis can use (Samarakoon et al., 2021); genetic algorithms, fuzzy logic, ANFIS, and evolutionary algorithms. The method of geometric approach in the analysis of the inverse kinematics algorithm can use; capital method (UE, n.d.).
RESULT AND DISCUSSION
We can review the positive and negative directions (Faumont et al., 2011), on the z-axis in 4 different quadrants in the simulated target position (Barnsley et al., 2016). We'll be doing a visualization on a fixed link length (Albrecht-Buehler et al., 2005). Based on the picture above, we see that the first square will show the final effect on the positive z-axis with length (Hu & Sonnerup, 2002) (2,1,1). By plotting with a unit length of 1, we will get (2,1,1) as the final position of the effector. While (5.5, 4.3, 2) is the final position of the effector at the eight elbow. With a unit length of half, at the elbow of 16 we get (3, 4, 1), and (3, 2, 1) is the location of the final effector of length 1 , at the elbow it is 4.
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Figure 5. Simulation on positive z
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Figure 6. Simulation on negative z.

The picture above describes and visualizes the results of the algorithm from the negative z-axis (Woods et al., 1993). The location of the effector is at (5, 3, -1) on the 4th elbow. While at the 8th elbow the final position of the effector (Merad et al., 2020) is (6, 4.2, -1) with the unit length being one. The position of the effector (5, 1, -2) with the unit length is 0.5 at the elbow 16, and we can see that there is also the position of the effector at the position (2.5, 1.3, -0.5) with various units of length, namely; (1.1, 1.2, 1.3, and 1) on the elbows of 4 robots HRR. From the picture above, we can see that both negative and positive quadrants can be implemented in 3-dimensional space (Bostan et al., 2016). Simulations performed from various elbows also accommodate down and up elbow configurations. In the test, it also consistently formed coils at elbows 4 and 8 on the HRR (Rosheim, 1994).
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Figure 7. The final position of the effector is in quadrant 2, on the positive z-axis
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Figure 8. The final position of the effector in quadrant 1, on the negative z-axis


However, we can see that only part of the support at the end of the HRR elbow is at elbow 16. And the elbow lengths of 16 and 8 are still more or less better than elbow lengths of 4 and 8 (Anakwe et al., 2011). This is due to the zigzag shape of links 8 and 16, so that it is possible not to reach the final effector location, and this will not prevent the singularity from occurring (Aristidou et al., 2018). To make the HRR have a 2-m link count, the link must be forced to lock in the simulation with another link (Chen, 2007), because there are things that will not be used in the calculation, namely links that are not 2-m (Lü & Zhou, 2011). 
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Figure 9. The final position of the effector in the 2 quadrant
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Figure 10. The final position of the effector in the 3 quadrant
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Figure 11. The final position of the effector in the 4 quadrant

The 4th corner of the HRR will change due to a locking link from the 5th corner of the HRR and will be one link larger than before (Knez & Camerer, 1994). As for this algorithm, it will provide a single solution because usually algorithms that usually require many solutions (Deb, 2003), and the other advantage is that this algorithm will prevent and reduce singularity if the link is lower (Levy & Lindenbaum, 1998).

CONCLUSSION
Based on previous research, algorithm studies for 2 dimensions have been carried out, so in this article a study of algorithms for 3 dimensions has been carried out, which is the development of previous research. We have shown how to step together on the z-axis by rotating and using the inverse kinematics solution to the desired location. The tool in simulating this algorithm simulation is using the mathlab tool. The results of the visualization will be repeated so that it can ensure the effectiveness of the algorithm. As for this algorithm, it will provide a single solution because usually algorithms that usually require many solutions, and the other advantage is that this algorithm will prevent and reduce singularity if the link is lower.
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