ANALISIS KERENTANAN SOSIAL DI KABUPATEN OGAN ILIR

Authors

  • Budi Utomo Geography Education, Universitas PGRI Palembang
  • Maharani Oktavia Geography Education, Universitas PGRI Palembang
  • Eni Heldayani Geography Education, Universitas PGRI Palembang
  • siti Asiyah Geography Education, Universitas PGRI Palembang
  • mega kusuma putri Geography Education, Universitas PGRI Palembang

DOI:

https://doi.org/10.31851/swarnabhumi.v7i1.7462

Keywords:

Bencana, Banjir dan Kerentanan Sosial

Abstract

Bencana bancir dapat menimbulkan dampak psikologis yang negatif selain menimbulkan kerugian harta benda, kerusakan lingkungan, dan hilangnya nyawa. Salah satu kabupaten yang sering dilanda banjir adalah Kabupaten Ogan Ilir. penelitian ini bertujuan untuk mengurangi risiko bencana banjir di Kab. OI dengan mengkaji kerentanan sosial masyarakat. Hasil penelitian menunjukkan bahwa setiap kecamatan yang ada di Kabupaten Ogan Ilir memiliki kerentanan sosial tinggidari bencana banjir. Adapun dari keseluruhan tingkat kerentanan bencana banjir di Kabupaten Ogan Ilir mencapai kerugian Rp 1.145.147.000,- dari  seluruh kerentanan sosial kecamatan yang ada di Kabupaten Ogan Ilir. Kerentanan social di kabupaten ogan ilir mulai penduduk yang terkena dampak seperti penduduk miskin, kelompok jenis kelamin yang rentan, penduduk yang cacat dan kelompok penduduk umur yang rentan.

References

Arifah, Salman, D., Yassi, A., & Bahsar-Demmallino, E. (2022). Climate change impacts and the rice farmers’ responses at irrigated upstream and downstream in Indonesia. Heliyon, 8(12), e11923. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e11923

Bajracharya, A., Shrestha, K. K., Zwi, A. B., & Baldry, E. (2022). Reframing Gendered Disaster: Lessons from Nepal’s Indigenous women. International Journal of Disaster Risk Reduction, 83, 103422. https://doi.org/https://doi.org/10.1016/j.ijdrr.2022.103422

Buchori, I., Pramitasari, A., Pangi, P., Sugiri, A., Maryono, M., Basuki, Y., & Sejati, A. W. (2021). Factors distinguishing the decision to migrate from the flooded and inundated community of Sayung, Demak: A suburban area of Semarang City, Indonesia. International Journal of Disaster Risk Reduction, 52, 101946. https://doi.org/https://doi.org/10.1016/j.ijdrr.2020.101946

Davis, T. R., Larkin, M. F., Forbes, A., Veenhof, R. J., Scott, A., & Coleman, M. A. (2022). Extreme flooding and reduced salinity causes mass mortality of nearshore kelp forests. Estuarine, Coastal and Shelf Science, 275, 107960. https://doi.org/https://doi.org/10.1016/j.ecss.2022.107960

Desalegn, H., & Mulu, A. (2021). Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon, 7(1), e05865. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e05865

Eddy, S., Setiawan, A. A., Taufik, M., Oktavia, M., Utomo, B., & Milantara, N. (2023). Loss of carbon stock as an impact of anthropogenic activities in a protected mangrove forest. Biodiversitas, 24(12), 6493–6501. https://doi.org/10.13057/biodiv/d241211

Pan, Y., Fu, Y., Liu, S., Ma, T., Tao, X., Ma, Y., Fan, S., Dang, Z., & Lu, G. (2022). Spatial and temporal variations of metal fractions in paddy soil flooding with acid mine drainage. Environmental Research, 212, 113241. https://doi.org/https://doi.org/10.1016/j.envres.2022.113241

Roy, P., Chandra Pal, S., Chakrabortty, R., Chowdhuri, I., Malik, S., & Das, B. (2020). Threats of climate and land use change on future flood susceptibility. Journal of Cleaner Production, 272, 122757. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122757

Tian, X., Gong, J., & Zhai, Z. (2022). Natural disasters and human capital accumulation: Evidence from the 1976 Tangshan earthquake. Economics of Education Review, 90, 102304. https://doi.org/https://doi.org/10.1016/j.econedurev.2022.102304

Utomo, B., Oktavia, M., Susilo, Y., & Putri, M. K. (2023). Identification of drought endemic areas in Musi Banyuasin regency. Kuwait Journal of Science, 50(2), 168–173. https://doi.org/https://doi.org/10.1016/j.kjs.2023.03.002

Xie, S., Hou, C., Yu, H., Zhang, Z., Luo, X., & Zhu, N. (2022). Multi-label disaster text classification via supervised contrastive learning for social media data. Computers and Electrical Engineering, 104, 108401. https://doi.org/https://doi.org/10.1016/j.compeleceng.2022.108401

Xing, Y., Shao, D., Yang, Y., Ma, X., & Zhang, S. (2021). Influence and interactions of input factors in urban flood inundation modeling: An examination with variance-based global sensitivity analysis. Journal of Hydrology, 600, 126524. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126524

Yu, J., Liu, J., Baek, J.-W., Fong, C., & Fu, M. (2022). Impact-based forecasting for improving the capacity of typhoon-related disaster risk reduction in typhoon committee region. Tropical Cyclone Research and Review, 11(3), 163–173. https://doi.org/https://doi.org/10.1016/j.tcrr.2022.09.003

Downloads

Published

2022-02-28