Pemodelan Efisiensi Energi Panel Surya Berdasarkan Variasi Suhu Dengan Algoritma Random Forest

Authors

  • Feby ardianto Uninersitas Muhammadiyah Palembang
  • Yosi Apriani Program Studi Teknik Elektro, Universitas Mummadiyah Palembang, Indonesia
  • Muhammad Alvin Pratama Program Studi Teknik Elektro, Universitas Mummadiyah Palembang, Indonesia
  • Eko Ariyanto Program Studi Teknik Kimia, Universitas Mummadiyah Palembang, Indonesia

DOI:

https://doi.org/10.31851/ampere.v9i2.16836

Keywords:

Temperature Efficiency, Random Forest, Software Rstudio, MSE, RMSE

Abstract

When temperature increases, energy efficiency tends to decrease. This is because the materials in solar panels, especially photovoltaic cells, have characteristics that make them less efficient at converting solar energy into electrical energy when temperatures rise. By using the random forest research method and Rstudio software to help analyze it can be concluded that the temperature variation that has the most influence on power efficiency is light intensity with a contribution of 19%, then air temperature with 18%, humidity with 17.5%, wind speed with 14%. 5% and finally panel temperature with a contribution of 13%. This contribution is the contribution to the power produced by the effect of temperature on the power produced. at 10.13 the highest power was obtained, where the power produced was 164.48 Watts. With a light intensity of 431.44 cd (candela), air temperature of 41.9°C, humidity of 49.4%, wind speed of 0.2 m/s, and panel temperature of 35 °C

References

A. Makkulau, S. Samsurizal, and S. Kevin, “Karakteristik Temperatur Pada Permukaan Sel Surya Polycrystalline Terhadap Efektifitas Daya Keluaran Pembangkit Listrik Tenaga Surya,” Sutet, vol. 10, no. 2, pp. 69–78, 2020, doi: 10.33322/sutet.v10i2.1291.

H. P. D. Edwin, W. A. Jhon, T. Ambros, and P. Aris, “Pengaruh Bayangan Terhadap Output Tegangan Dan Kuat Arus Pada Pembangkit Listrik Tenaga Surya (Plts),” Rotor, vol. 11, no. 2, p. 47, 2018, doi: 10.19184/rotor.v11i2.9343.

J. Indra Bayu, I. Budi Sulistiyawati, and N. Putu Agustini, “Monitoring Pengaruh Suhu Pada Panel Surya Terhadap Performa Keluaran Pembangkit Listrik Tenaga Surya,” J. FORTECH, vol. 4, no. 1, pp. 27–32, 2023, doi: 10.56795/fortech.v4i1.4104.

K. Olcay, S. Giray Tunca, and M. Arif Ozgur, “Forecasting and Performance Analysis of Energy Production in Solar Power Plants Using Long Short-Term Memory (LSTM) and Random Forest Models,” IEEE Access, vol. 12, no. June, pp. 103299–103312, 2024, doi: 10.1109/ACCESS.2024.3432574.

D. E. Myori, R. Mukhaiyar, and E. Fitri, “Sistem Tracking Cahaya Matahari pada Photovoltaic,” INVOTEK J. Inov. Vokasional dan Teknol., vol. 19, no. 1, pp. 9–16, 2019, doi: 10.24036/invotek.v19i1.548.

R. Pratama, “Pengembangan Sistem Akuisisi Data Arus, Tegangan, Daya Dan Temperatur Pada Pembangkit Listrik Tenaga Surya,” J. Edukasi Elektro, vol. 3, no. 2, pp. 55–62, 2020, doi: 10.21831/jee.v3i2.29812.

H. B. Nurjaman and T. Purnama, “Pembangkit Listrik Tenaga Surya (PLTS) Sebagai Solusi Energi Terbarukan Rumah Tangga,” J. Edukasi Elektro, vol. 6, no. 2, pp. 136–142, 2022, doi: 10.21831/jee.v6i2.51617.

A. Azis, M. Rijaluddin Tahfiz, and N. Nurdiana, “Perancangan Sistem Penggerak Panel Surya Pada Pembangkit Listrik Tenaga Surya Mobile Berbasis Arduino,” Electr. J. Rekayasa dan Teknol. Elektro, vol. 17, no. 2, pp. 161–168, 2023, doi: 10.23960/elc.v17n2.2418.

Suriadi and M. Syukri, “Perencanaan Pembangkit Listrik Tenaga Surya (PLTS) Terpadu Menggunakan Software PVSYST Pada Komplek Perumahan di Banda Aceh,” J. Rekayasa Elektr., vol. 9, no. 2, pp. 77–80, 2020.

F. W. Atmojo et al., “Analisis Pemanfaatan Machine Learning Guna Prediksi Indeks,” vol. 9, no. 2, 2024.

Downloads

Published

2024-12-30

How to Cite

ardianto, F., Apriani, Y., Muhammad Alvin Pratama, & Ariyanto, E. (2024). Pemodelan Efisiensi Energi Panel Surya Berdasarkan Variasi Suhu Dengan Algoritma Random Forest. Jurnal Ampere, 9(2), 150–161. https://doi.org/10.31851/ampere.v9i2.16836