Komparasi Simulasi Kontrol Suhu dan Level Air Pada Tanaman Hidroponik Menggunakan Sistem Fuzzy Mamdani dan Adaptive Neuro Fuzzy Inference System (ANFIS)
DOI:
https://doi.org/10.31851/ampere.v6i1.5977Keywords:
Temperature, Water Level, Mamdani, ANFISAbstract
In hydroponic planting, there are several things that must be considered so that plant growth is not disturbed, including controlling the temperature and water level. By using a fuzzy control system simulation we can adjust the work of the roof and the water pump to suit changes in temperature and water level. Apart from using the fuzzy control system, we can also use ANFIS in predicting roof control and water pumps. From the simulation results, it is found that there is a difference for the roof between 0.001 to 0.02, while for the water pump there is a difference between 0.006 to 0.01. With the average error obtained when using ANFIS is 0.0079496 for roof control and 0.01296 for water pump control.
Â
Abstrak— Dalam menanam hidroponik ada beberapa hal yang harus diperhatikan agar pertumbuhan tanaman tidak terganggu, antara lain adalah pengontrolan suhu dan level air. Dengan menggunakan simulasi sistem kontrol fuzzy kita dapat mengatur kerja atap dan pompa air agar sesuai dengan perubahan suhu dan level air. Selain dengan menggunakan sistem kontrol fuzzy kita juga dapat menggunakan ANFIS dalam memprediksi kontrol atap dan pompa air. Dari hasil simulasi diperoleh terdapat selisih untuk atap antara 0.001 sampai 0.02 , sedangkan untuk pompa air terdapat selisih antara 0.006 sampai dengan 0.01. Dengan rata-rata error yang diperoleh pada saat menggunakan ANFIS adalah 0,0079496 untuk kontrol atap dan 0,01296 untuk kontrol pompa air.
References
Wang, J.S., Lee, C.S.G.,2002 "Self-Adaptive Neuro-Fuzzy Inference Systems forClassification Applications", IEEE Trans. on Fuzzy Systems, 10, 6, Dec.
Syahputra, R., Robandi, I., and Ashari, M., 2014a, “Optimization of DistributionNetwork Configuration with Integration of Distributed Energy Resources Using Extended Fuzzy Multi-objective Methodâ€, International Review of Electrical Engineering (IREE), vol.9, no.3, pp. 629-639.
Kusumadewi,Sri,dkk.2010. "Buku Aplikasi Logika Fuzzy untuk Pendukung Keputusan". Edisi 2. Graha Ilmu.Yogyakarta (2-47)
T.Sutojo dkk, 2010. "Kecerdasan Buatan" , Penerbit Andi Offset . Yogyakarta (235)
Agus Naba, 2009 ,"Belajar Cepat Fuzzy Logic Menggunakan MATLAB,"Penerbit Andi Offset . Yogyakarta (118-120).
Jang, J-S, dkk.,Neuro-Fuzzy and Soft Computing, Prentice-Hall International, Inc., 1997.
Kusumadewi, Sri dan Sri Hartati, 2010, "Neuro-Fuzzy Integrasi Sistem Fuzzy & Jaringan Syaraf"
Downloads
Published
How to Cite
Issue
Section
License
Jurnal Ampere is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.