Design Constant Head Permeability Meter Digital: A Project-Based Learning Media

Authors

  • Virma Septiani Politeknik Penerbangan Palembang
  • Direstu Amalia Politeknik Penerbangan Palembang
  • Viktor Suryan Politeknik Penerbangan Palembang
  • Siti Salbiah Ristumanda Politeknik Penerbangan Palembang
  • Suci Ryski Nur Afriyani Politeknik Penerbangan Palembang

DOI:

https://doi.org/10.31851/jmksp.v9i2.15191

Keywords:

Constant Head, Design Permeability Test, Project-Based Learning, Soil Permeability Coefficient

Abstract

The permeability coefficient value is one of the most important parameters in soil mechanics. Quick, simple, and digital direct soil permeability tests in the field are needed to obtain data representing conditions. This research aims to create a portable soil permeability test tool based on microcontroller automation used as a project-based learning for Transportation Cadets peculiarly Palembang Aviation Polytechnic Cadets for new experiences of new learning circumstances. This research method based on the principle of permeability testing using the constant-head method by analyzing the requirements quantitatively. This principle uses water change level parameters, which are used to test the infiltration rate in sample soil. Furthermore, measurements of changes in water level are used by water leveling sensors and processed using Arduino Uno based on fuzzy logic with access to results via the web, tool design, and simulation using SIMULINK software. The results of designing a digital measuring instrument for permeability using the constant head method have been validated for its schematic circuit using SIMULINK and can work without error. In conclusion, a model based on Darcy's Law equation and constant head to find the permeability coefficient can be generated, which can then be a prototype of the tool. It concluded the design of constant head permeability meter digital is useful as project-based leaning media for the Palembang aviation polytechnic. Furthermore, the equipment design will be the first digital measuring tool for permeability coefficient using the constant head method. The design has advantage to measure the soil permeability coefficient at the airport in the fastest way.

References

Almulla, M. A. (2020). The effectiveness of the project-based learning (PBL) approach as a way to engage students in learning. Sage Open, 10(3), 2158244020938702. https://doi.org/doi.org/10.1177/2158244020938702

Amalia, D., Hadiansyah, R., & Septiani, V. (2022). Smart parking IoT based: design and prototype. JMKSP (Jurnal Manajemen, Kepemimpinan, Dan Supervisi Pendidikan), 7(1), 67–81. https://doi.org/https://doi.org/10.31851/jmksp.v7i1.6677

Andres-Valeri, V. C., Juli-Gandara, L., Jato-Espino, D., & Rodriguez-Hernandez, J. (2018). Characterization of the infiltration capacity of porous concrete pavements with low constant head permeability tests. Water, 10(4), 480. https://doi.org/doi.org/10.3390/w10040480

Chen, L.-M., Chen, J.-W., Chen, T.-H., Lecher, T., & Davidson, P. C. (2019). Measurement of permeability and comparison of pavements. Water, 11(3), 444. https://doi.org/doi.org/10.3390/w11030444

Chen, L.-M., Chen, J.-W., Lecher, T., Chen, T.-H., & Davidson, P. (2020). Assessment of clogging of permeable pavements by measuring change in permeability. Science of the Total Environment, 749, 141352. https://doi.org/doi.org/10.1016/j.scitotenv.2020.141352

Cloete, N. A., Malekian, R., & Nair, L. (2016). Design of smart sensors for real-time water quality monitoring. IEEE Access, 4, 3975–3990. https://doi.org/doi.10.1109/ACCESS.2016.2592958

Danim, S. (2023). The Capability of Students to Collect Materials for Course Presentations Based on Project Learning. JMKSP (Jurnal Manajemen, Kepemimpinan, Dan Supervisi Pendidikan), 8(1), 61–66. https://doi.org/https://doi.org/10.31851/jmksp.v8i1.10338

Das, B. M., & Sobhan, K. (2014). Principles of Geotechnical Engineering, Eighth edi. United State of America.

Edaris, Z. L., & Abdul-Rahman, S. (2016). Performance comparison of PID tuning by using ziegler-nichols and particle swarm optimization approaches in a water control system. Journal of Information and Communication Technology, 15(1), 203–224. https://doi.org/doi.10.32890/JICT2016.15.1.10

Gao, Y., Lin, Q., Bijeljic, B., & Blunt, M. J. (2020). Pore-scale dynamics and the multiphase Darcy law. Physical Review Fluids, 5(1), 13801. https://doi.org/doi.org/10.1103/PhysRevFluids.5.013801

Gomez-del Rio, T., & Rodr’iguez, J. (2022). Design and assessment of a project-based learning in a laboratory for integrating knowledge and improving engineering design skills. Education for Chemical Engineers, 40, 17–28. https://doi.org/doi.org/10.1016/j.ece.2022.04.002

Guo, P., Saab, N., Post, L. S., & Admiraal, W. (2020). A review of project-based learning in higher education: Student outcomes and measures. International Journal of Educational Research, 102, 101586. https://doi.org/https://doi.org/10.1016/j.ijer.2020.101586

Hariono, T., Mahdalena, A., & Ashoumi, H. (2021). Automatic Water Temperature Control System In Hydroponic Plants With Peltier Tec1 12706 And Temperature Sensors DS18B20. Multidiscipline International Conference, 1(1), 438–445. https://doi.org/doi.org/10.30630/joiv.6.1.865

Head, K. H., & Epps, R. J. (2011). Manual of Soil Laboratory Testing, Volume 2: Permeability, Shear Strength, and Compressibility Tests (Vol. 2). Dunbeath, UK: Whittles Publishing.

Ilie, A. M. C., Goebel, C., & Illangasekare, T. (2020). Performance assessment of soil moisture sensors under controlled conditions in laboratory setting and recommendations for field deployment.

Kaczmarek, W., Panasiuk, J., Borys, S., Pobudkowska, A., & Majsterek, M. (2020). Analysis of the kinetics of swimming pool water reaction in analytical device reproducing its circulation on a small scale. Sensors, 20(17), 4820. https://doi.org/doi:10.3390/s20174820

Lei, G. H., Liu, F. X., & Xia, S. W. (2020). A note on falling-head and rising-tail permeability tests on saturated soils in centrifuge. Canadian Geotechnical Journal, 57(8), 1232–1238. https://doi.org/doi.org/10.1139/cgj-2019-0222

Liu, Y. F., & Jeng, D. S. (2019). Pore scale study of the influence of particle geometry on soil permeability. Advances in Water Resources, 129, 232–249. https://doi.org/doi.org/10.1016/j.advwatres.2019.05.024

López-Acosta, N. P., Espinosa-Santiago, A. L., & Barba-Galdámez, D. F. (2019). Characterization of soil permeability in the former Lake Texcoco, Mexico. Open Geosciences, 11(1), 113–124. https://doi.org/doi:10.1515/geo-2019-0010

Mir, B. A. (2021). Manual of geotechnical laboratory soil testing. CRC Press. https://doi.org/doi.org/10.1201/9781003200260

Mishra, M., Lourenço, P. B., & Ramana, G. V. (2022). Structural health monitoring of civil engineering structures by using the internet of things: A review. Journal of Building Engineering, 48, 103954. https://doi.org/doi.org/10.1016/j/jobe.2021.103954

Nazari, S., Hassanlourad, M., Chavoshi, E., & Mirzaii, A. (2018). Experimental investigation of unsaturated silt-sand soil permeability. Advances in Civil Engineering, 2018, 1–12. https://doi.org/doi:10.1155/2018/4946956

Nguyen, H.-T., Lee, Y., Ahn, J., Han, T. H., & Park, J. K. (2023). A low-cost lightweight deflectometer with an Arduino-based signal interpretation kit to evaluate soil modulus. Sensors, 23(24), 9710. https://doi.org/https://doi.org/10.3390/s23249710

Onyema, C., Pallam, S. W., & Abioye, A. (2022). The Design and Construction of a Water Fountain with Water Level Monitoring and Automatic Sprinkler System with Ground Moisture Sensor and Real-Time Clock. Iconic Research and Engineering Journals, 5(7), 272–292.

Pan, G., Seow, P.-S., Shankararaman, V., & Koh, K. (2021). An exploration into key roles in making project-based learning happen: Insights from a case study of a university. Journal of International Education in Business, 14(1), 109–129. https://doi.org/doi.org/10.1108/JIEB-02-2020-0018

Parikesit, E., Kusbandono, W., & Sambada, F. A. R. (2019). Microcontroller Based Simple Water Flow Rate Control System to Increase the Efficiency of Solar Energy Water Distillation. International Journal of Applied Sciences and Smart Technologies, 1(2), 129–146. https://doi.org/doi: 10.24071/ijasst.v1i2.1923

Rizaman, A. R., Selamat, H., & Khamis, N. (2021). Digitaization of Analogue Meter Reading Using Convolution Neural Network. MEKATRONIKA, 3(1), 28–34. https://doi.org/doi:10.15282/mektrinuka.v3i1.7149

Sandra, R., Simbar, V., & Syahrin, A. (2017). Temperature Monitoring System Prototype Using Arduino Uno R3 with Wireless Communication. Jurnal Teknologi Elektro, 8(1), 80–86.

Santos, J., Pires, T., Gouveia, B. P., Castro, A. P. G., & Fernandes, P. R. (2020). On the permeability of TPMS scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 110, 103932. https://doi.org/doi.org/10.1016/j.jmbbm.2020.103932

Shrenika, R. M., Chikmath, S. S., Kumar, A. V. R., Divyashree, Y. V, & Swamy, R. K. (2017). Non-contact water level monitoring system implemented using LabVIEW and Arduino. 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), 306–309. https://doi.org/doi:10.1109/ICRAECT.2017.51

Singh, B., Sihag, P., Pandhiani, S. M., Debnath, S., & Gautam, S. (2021). Estimation of permeability of soil using easy measured soil parameters: assessing the artificial intelligence-based models. ISH Journal of Hydraulic Engineering, 27(sup1), 38–48. https://doi.org/doi: 10.1080/09715010.2019.1574615

Sugiyanto, S., Setiawan, A., Hamidah, I., & Ana, A. (2020). Integration of mobile learning and project-based learning in improving vocational school competence. Journal of Technical Education and Training, 12(2), 55–68. https://doi.org/doi:10.30880/jtet.2020.12.02.006

Suryan, V., Amalia, D., Septiani, V., Sukahir, S., Nurfitri, M. A., & Chandra, P. W. A. (2023). Airport Runway Defect Detection Device: A Project-Based Learning Media. JMKSP (Jurnal Manajemen, Kepemimpinan, Dan Supervisi Pendidikan), 8(1), 642–650. https://doi.org/doi: 10.31851/jmksp.v8i1.13185

Zhang, Y., Li, H., Abdelhady, A., & Yang, J. (2020). Comparative laboratory measurement of pervious concrete permeability using constant-head and falling-head permeameter methods. Construction and Building Materials, 263, 120614. https://doi.org/doi:10.1016/j.conbuildmat.2020.120614

Zhu, H.-H., Huang, Y.-X., Huang, H., Garg, A., Mei, G.-X., & Song, H.-H. (2022). Development and evaluation of arduino-based automatic irrigation system for regulation of soil moisture. International Journal of Geosynthetics and Ground Engineering, 8(1), 13. https://doi.org/https://doi.org/10.3390/s23249710

Downloads

Published

2024-07-04

How to Cite

Septiani, V., Amalia, D., Suryan, V., Ristumanda, S. S., & Afriyani, S. R. N. (2024). Design Constant Head Permeability Meter Digital: A Project-Based Learning Media. JMKSP (Jurnal Manajemen, Kepemimpinan, Dan Supervisi Pendidikan), 9(2), 856–868. https://doi.org/10.31851/jmksp.v9i2.15191