Perkembangan Penerapan Nanoteknologi di Bidang Pelapisan (Coating)

Authors

  • Febria Mita Prodi Fisika Fakultas Sains dan Teknologi Universitas PGRI Palembang
  • Asiah Jumarni Prodi Fisika Fakultas Sains dan Teknologi Universitas PGRI Palembang
  • Rosita Wati Prodi Fisika Fakultas Sains dan Teknologi Universitas PGRI Palembang
  • Azizah Patimah Prodi Fisika Fakultas Sains dan Teknologi Universitas PGRI Palembang
  • Dui Yanto Rahman Prodi Fisika Fakultas Sains dan Teknologi Universitas PGRI Palembang

Keywords:

Nanoteknologi, Pelapisan, Anti-Korosi, Self-cleaning, Nanomaterial

Abstract

Nanoteknologi telah menjadi salah satu bidang penelitian yang menjanjikan dalam berbagai industri, termasuk bidang pelapisan (coating). Artikel ini bertujuan untuk menggambarkan perkembangan penerapan nanoteknologi dalam bidang pelapisan dan mengungkapkan keunggulan yang dimilikinya. Penerapan nanoteknologi dalam pelapisan telah memberikan banyak manfaat signifikan. Salah satu keunggulannya adalah kemampuan untuk menghasilkan lapisan yang lebih kuat dan lebih tahan terhadap korosi dan aus. Partikel nanoskala yang digunakan dalam pelapisan dapat membentuk struktur yang padat dan merata, meningkatkan ketahanan mekanik dan kekuatan lapisan. Selain itu, penggunaan nanomaterial juga memungkinkan adanya peningkatan kemampuan proteksi terhadap radiasi ultraviolet (UV) dan panas, mengurangi risiko kerusakan akibat paparan sinar matahari dan suhu ekstrem. Selain keunggulan mekanik, nanoteknologi juga memberikan kemampuan fungsionalitas yang unik dalam pelapisan. Partikel nanopartikel dapat dimodifikasi untuk memberikan sifat tahan air, anti-bakteri, atau sifat anti-korosi yang lebih baik. Selain itu, kemampuan nanomaterial untuk mengubah sifat permukaan juga dapat dimanfaatkan dalam pengendalian kelekatan kotoran, menghasilkan lapisan self-cleaning yang mampu menjaga permukaan tetap bersih dan bebas dari kontaminan. Tujuan penulisan artikel ini adalah untuk mempertajam pemahaman tentang perkembangan penerapan nanoteknologi dalam bidang pelapisan. Dengan memahami keunggulan nanoteknologi dalam pelapisan, diharapkan dapat memotivasi penelitian dan pengembangan lebih lanjut dalam mengoptimalkan penggunaan nanomaterial dalam industri pelapisan.

References

Abbaspoor, S., Ashrafi, A., & Abolfarsi, R. (2019). Development of self-healing coatings based on ethyl cellulose micro/nano-capsules. Surface Engineering, 35(3), 273-280.

Abdipour, H., Rezaei, M., & Abbasi, F. (2018). Synthesis and characterization of high durable linseed oil-urea formaldehyde micro/nanocapsules and their self-healing behaviour in epoxy coating. Progress in Organic Coatings, 124, 200-212.

An, K., Long, C., Sui, Y., Qing, Y., Zhao, G., An, Z., ... & Liu, C. (2020). Large-scale preparation of superhydrophobic cerium dioxide nanocomposite coating with UV resistance, mechanical robustness, and anti-corrosion properties. Surface and Coatings Technology, 384, 125312.

Ayub, M., Othman, M. H. D., Khan, I. U., Yusop, M. Z. M., & Kurniawan, T. A. (2021). Graphene-based nanomaterials as antimicrobial surface coatings: A parallel approach to restrain the expansion of COVID-19. Surfaces and Interfaces, 27, 101460.

Calia, A., Lettieri, M., & Masieri, M. (2016). Durability assessment of nanostructured TiO2 coatings applied on limestones to enhance building surface with self-cleaning ability. Building and Environment, 110, 1-10.

Chen, X., Zhang, L., & Guo, L. (2018). Mechanical properties of nanomaterials: A review. Materials Today Physics, 5, 100038.

Davarpanah, A., Bahlakeh, G., & Ramezanzadeh, B. (2023). Engineering a novel smart nano-carrier based on NH2-MIL-125 metal-organic framework (Ti-MOF) decorated 2D GO nano-platform for reaching a self-healing coating. Applied Materials Today, 32, 101844.

Dwandaru, W. B., Putri, Z. C., & Yulianti, E. (2016). Pengaruh Variasi Konsentrasi Bahan Aditif Larutan Nanopartikel Perak Terhadap Sifat Anti-Jamur Cat Dinding sebagai Aplikasi Teknologi Nano dalam Industri Cat Dinding. INOTEKS: Jurnal Inovasi Ilmu Pengetahuan, Teknologi, dan Seni, 20(1), 1-18.

El-Shamy, O. A., & Deyab, M. A. (2023). Eco-friendly biosynthesis of silver nanoparticles and their improvement of anti-corrosion performance in epoxy coatings. Journal of Molecular Liquids, 376, 121488.

El-Shamy, O. A., & Deyab, M. A. (2023). Improvement of the corrosion resistance of epoxy coatings with the use of a novel zinc oxide-alginate nanoparticles compound. Materials Letters, 331, 133402.

Erol, K., Bolat, M., Tatar, D., Nigiz, C., & Köse, D. A. (2020). Synthesis, characterization and antibacterial application of silver nanoparticle embedded composite cryogels. Journal of Molecular Structure, 1200, 127060.

Eshaghi, A. (2019). Transparent hard self-cleaning nano-hybrid coating on polymeric substrate. Progress in Organic Coatings, 128, 120-126.

Fadl, A. M., Abdou, M. I., Hamza, M. A., & Sadeek, S. A. (2020). Corrosion-inhibiting, self-healing, mechanical-resistant, chemically and UV stable PDMAS/TiO2 epoxy hybrid nanocomposite coating for steel petroleum tanker trucks. Progress in Organic Coatings, 146, 105715.

Faustini, M., Nicole, L., Boissiere, C., Innocenzi, P., Sanchez, C., & Grosso, D. (2010). Hydrophobic, antireflective, self-cleaning, and antifogging sol− gel coatings: an example of multifunctional nanostructured materials for photovoltaic cells. Chemistry of Materials, 22(15), 4406-4413.

Gergely, A., Pászti, Z., Mihály, J., Drotár, E., & Török, T. (2015). Galvanic function of zinc-rich coatings facilitated by percolating structure of the carbon nanotubes. Part I: Characterization of the nano-size particles. Progress in Organic Coatings, 78, 437-445.

Ghasemi, R., & Vakilifard, H. (2017). Plasma-sprayed nanostructured YSZ thermal barrier coatings: thermal insulation capability and adhesion strength. Ceramics International, 43(12), 8556-8563.

H. J. Qi et al., "Nanotechnology in coatings industry: current status, challenges, and prospects," Journal of Coatings Technology and Research, vol. 17, pp. 659-677, 2020.

Haddadi, S. A., SA, A. R., Mahdavian, M., & Arjmand, M. (2021). Epoxy nanocomposite coatings with enhanced dual active/barrier behavior containing graphene-based carbon hollow spheres as corrosion inhibitor nanoreservoirs. Corrosion Science, 185, 109428.

Hao, L., Jiang, Z., Fang, Y., Zhou, Y., Fu, B., & Lin, L. (2023). Understanding the role of oxygen vacancy on corrosion resistance of coating containing cerium oxide nanoparticles doped with cobalt as highly effective corrosion inhibitors. Applied Surface Science, 626, 157300.

Huang, Z., Zhou, X., Wang, Y., Zhou, X., Chen, J., & Chen, S. (2019). Recent Advances in Smart Coatings for Corrosion Protection of Metals in Harsh Environments: A Review. Journal of Materials Chemistry A, 7(28), 16793-16812.

Jiang, K., Liu, S., & Wang, X. (2017). Phase stability and thermal conductivity of nanostructured tetragonal yttria–stabilized zirconia thermal barrier coatings deposited by air–plasma spraying. Ceramics International, 43(15), 12633-12640.

Khadem, M., Penkov, O. V., Pukha, V. E., Maleyev, M. V., & Kim, D. E. (2016). Ultra-thin carbon-based nanocomposite coatings for superior wear resistance under lubrication with nano-diamond additives. RSC advances, 6(62), 56918-56929.

Khan, M. Z., Militky, J., Baheti, V., Wiener, J., & Vik, M. (2021). Development of durable superhydrophobic and UV protective cotton fabric via TiO2/trimethoxy (octadecyl) silane nanocomposite coating. The Journal of The Textile Institute, 112(10), 1639-1650.

Kouhi, M., Mohebbi, A., Mirzaei, M., & Peikari, M. (2013). Optimization of smart self-healing coatings based on micro/nanocapsules in heavy metals emission inhibition. Progress in Organic Coatings, 76(7-8), 1006-1015.

Kumar, S. S. A., Batoo, K. M., Wonnie Ma, I. A., Ramesh, K., Ramesh, S., & Shah, M. A. (2023). Fabrication and characterization of graphene oxide-based polymer nanocomposite coatings, improved stability and hydrophobicity. Scientific Reports, 13(1), 8946.

Kumar, S., Ye, F., Mazinani, B., Dobretsov, S., & Dutta, J. (2021). Chitosan nanocomposite coatings containing chemically resistant ZnO–SnOx core–shell nanoparticles for photocatalytic antifouling. International journal of molecular sciences, 22(9), 4513.

Li, N., Kuang, J., Ren, Y., Li, X., & Li, C. (2021). Fabrication of transparent super-hydrophilic coatings with self-cleaning and anti-fogging properties by using dendritic nano-silica. Ceramics International, 47(13), 18743-18750.

Ling, X., Wang, X., & Wang, Y. (2020). The unique properties of nanomaterials and their applications. Nanomaterials, 10(7), 1383.

Liu, Y., Li, X., Li, Y., Li, Q., Li, J., & Li, J. (2020). Antibacterial effect of silver nanoparticles: a literature review. Nanomaterials, 10(2), 286.

Liu, Y., Sun, K., Li, L., Wang, X., & Wu, X. (2021). Recent progress of nano-enabled coating techniques and their potential applications in energy and environmental fields: A review. Journal of Materials Chemistry A, 9(10), 5779-5794.

M. A. Golozar et al., "Nanotechnology in coatings and its application areas: a review," Progress in Organic Coatings, vol. 142, pp. 105667, 2020.

Ma, J., Fan, X., & Zhang, Q. (2021). Recent advances in nanotechnology-enabled coating and surface modification for enhanced performance and functionality. Journal of Materials Chemistry A, 9(4), 1574-1594.

Matin, E., Attar, M. M., & Ramezanzadeh, B. (2015). Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate. Progress in Organic Coatings, 78, 395-403.

Mishra, A., & Bhatt, N. (2019). Nanosilica based superhydrophobic coating for high efficient self cleaning solar panels.

Mishra, A., Loganathan, H., & Bhatt, N. (2019). Preparation and Characterization of Nanosilica Based Superhydrophobic Antimicrobial Coatings and Evaluation of Bacterial Adhesion on Coated Surface. Trends in Biomaterials & Artificial Organs, 33(3).

Mohammadshahi, S., Breveleri, J., & Ling, H. (2023). Fabrication and characterization of super-hydrophobic surfaces based on sandpapers and nano-particle coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 666, 131358.

Mujib, S. B., Mukherjee, S., Ren, Z., & Singh, G. (2020). Assessing corrosion resistance of two-dimensional nanomaterial-based coatings on stainless steel substrates. Royal Society Open Science, 7(4), 200214.

Nadimi, M., Dehghanian, C., & Etemadmoghadam, A. (2022). Influence of SiO2 nanoparticles incorporating into ceramic coatings generated by PEO on Aluminium alloy: Morphology, adhesion, corrosion, and wear resistance. Materials Today Communications, 31, 103587.

Nieto, A., Kim, J., Penkov, O. V., Kim, D. E., & Schoenung, J. M. (2017). Elevated temperature wear behavior of thermally sprayed WC-Co/nanodiamond composite coatings. Surface and Coatings Technology, 315, 283-293.

Parhizkar, N., Ramezanzadeh, B., & Shahrabi, T. (2018). Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets. Applied Surface Science, 439, 45-59.

Pérez-Gandarillas, L., Aragón, D., Manteca, C., Gonzalez-Barriuso, M., Soriano, L., Casas, A., & Yedra, A. (2023). Highly Hydrophobic Organic Coatings Based on Organopolysilazanes and Silica Nanoparticles: Evaluation of Environmental Degradation. Coatings, 13(3), 537.

Plawecka, M., Snihirova, D., Martins, B., Szczepanowicz, K., Warszynski, P., & Montemor, M. F. (2014). Self healing ability of inhibitor-containing nanocapsules loaded in epoxy coatings applied on aluminium 5083 and galvanneal substrates. Electrochimica Acta, 140, 282-293.

Qi, K., Sun, Y., Duan, H., & Guo, X. (2015). A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite. Corrosion Science, 98, 500-506.

Raj, V., & Raj, R. M. (2016). Self-cleaning performance of superhydrophobic hybrid nanocomposite coatings on Al with excellent corrosion resistance. Materials Science and Engineering: B, 214, 87-97.

Rana, M., Hao, B., Mu, L., Chen, L., & Ma, P. C. (2016). Development of multi-functional cotton fabrics with Ag/AgBr–TiO2 nanocomposite coating. Composites science and technology, 122, 104-112.

Rostami, M., Rasouli, S., Ramezanzadeh, B., & Askari, A. J. C. S. (2014). Electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating. Corrosion Science, 88, 387-399.

Sahoo, P. C., Kausar, F., Lee, J. H., & Han, J. I. (2014). Facile fabrication of silver nanoparticle embedded CaCO 3 microspheres via microalgae-templated CO 2 biomineralization: application in antimicrobial paint development. RSC advances, 4(61), 32562-32569.

Sahu, S. C., Samantara, A. K., Seth, M., Parwaiz, S., Singh, B. P., Rath, P. C., & Jena, B. K. (2013). A facile electrochemical approach for development of highly corrosion protective coatings using graphene nanosheets. Electrochemistry Communications, 32, 22-26.

Sulistyono, A., Wahyuni, S., & Kasmui, K. (2018). Sintesis dan Karakterisasi TiO2 (nanorod)-SiO2 dan Aplikasinya Dalam Cat Akrilik. Indonesian Journal of Chemical Science, 7(1), 56-63.Sun, J., Wang, Y., Li, N., & Tian, L. (2019). Tribological and anticorrosion behavior of self-healing coating containing nanocapsules. Tribology International, 136, 332-341.

Sun, W., Wu, T., Wang, L., Yang, Z., Zhu, T., Dong, C., & Liu, G. (2019). The role of graphene loading on the corrosion-promotion activity of graphene/epoxy nanocomposite coatings. Composites Part B: Engineering, 173, 106916.

Syafiq, A., Vengadaesvaran, B., Ahmed, U., Abd Rahim, N., Pandey, A. K., Bushroa, A. R., ... & Ramesh, S. (2020). Facile synthesize of transparent hydrophobic nano-CaCO3 based coatings for and anti-fogging. Materials Chemistry and Physics, 239, 121913.

Verma, J., Khanna, A. S., Sahney, R., & Bhattacharya, A. (2020). Super protective anti-bacterial coating development with silica–titania nano core–shells. Nanoscale Advances, 2(9), 4093-4105.

Verma, J., Nigam, S., Sinha, S., & Bhattacharya, A. (2018). Development of polyurethane based anti-scratch and anti-algal coating formulation with silica-titania core-shell nanoparticles. Vacuum, 153, 24-34.

Vinodhini, S. P., & Xavier, J. R. (2023). Effects of carbon nanotubes-based composites on the corrosion protection and mechanical properties of polymer coating in chloride environment. Materials Science and Engineering: B, 295, 116621.

Wu, Q., Miao, W. S., Zhang, Y. D., Gao, H. J., & Hui, D. (2020). Mechanical properties of nanomaterials: A review. Nanotechnology Reviews, 9(1), 259-273.

Y. Li et al., "Nanotechnology in coatings: a review," Surface Coatings and Technology, vol. 237, pp. 8-24, 2013.

Y. Lu et al., "Recent advances of nanotechnology in coatings industry: a review," Coatings, vol. 10, no. 4, pp. 329, 2020.

Yan, D., Liu, J., Zhang, Z., Wang, Y., Zhang, M., Song, D., ... & Wang, J. (2021). Dual-functional graphene oxide-based nanomaterial for enhancing the passive and active corrosion protection of epoxy coating. Composites Part B: Engineering, 222, 109075.

Yao, Z., Hu, K., & Li, R. (2019). Enhanced high-temperature thermal fatigue property of aluminum alloy piston with Nano PYSZ thermal barrier coatings. Journal of Alloys and Compounds, 790, 466-479.

Yedra, A., Gutierrez-Somavilla, G., Manteca-Martinez, C., Gonzalez-Barriuso, M., & Soriano, L. (2016). Conductive paints development through nanotechnology. Progress in Organic Coatings, 95, 85-90.

Yuan, H., Qi, F., Zhao, N., Wan, P., Zhang, B., Xiong, H., ... & Ouyang, X. (2020). Graphene oxide decorated with titanium nanoparticles to reinforce the anti-corrosion performance of epoxy coating. Coatings, 10(2), 129.

Zhang, C., Li, W., Guo, Z., Sun, T., Wang, W., & Chen, S. (2023). Controllable construction of mesoporous silica/2D-COF nanocomposites reinforced epoxy coatings with excellent self-repairing and long-lasting anticorrosion performances. Progress in Organic Coatings, 177, 107441.

Zhang, C., Wei, Z., Liu, X., & Xie, H. (2020). Nanotechnology in coatings and its application prospect in the field of energy conservation and environmental protection. Journal of Nanomaterials, 2020.

Downloads

Published

2024-02-29