Potensi Antibakteri Serat Nano dari Ekstrak Tanaman Obat Indonesia: Tinjauan Fitokimia dan Teknologi Elektrospinning
DOI:
https://doi.org/10.31851/jupiter.v6i2.16961Abstract
Pengembangan serat nano berbasis tanaman obat melalui teknologi elektrospinning telah menarik minat besar dalam penelitian antibakteri karena karakteristik fisika unik dari serat nano, seperti luas permukaan yang tinggi dan porositas yang dapat disesuaikan. Artikel ini membahas potensi antibakteri serat nano yang dihasilkan dari ekstrak tanaman obat asli Indonesia, dengan fokus pada tinjauan skrining fitokimia dan teknik elektrospinning. Metabolit sekunder seperti flavonoid, alkaloid, tanin, dan saponin yang terkandung dalam tanaman obat Indonesia diketahui memiliki aktivitas antibakteri. Proses elektrospinning memungkinkan pembuatan serat nano dengan diameter submikron hingga nanometer, yang dapat meningkatkan efektivitas antibakteri melalui distribusi yang merata dari komponen bioaktif. Artikel ini juga mengulas prinsip fisika yang mendasari proses elektrospinning, termasuk pengaruh parameter tegangan, jarak nozzle-kolektor, dan viskositas larutan terhadap morfologi serat. Tantangan utama yang dihadapi dalam produksi serat nano berbasis tanaman obat meliputi homogenisasi ekstrak dalam matriks polimer dan optimisasi parameter fisik untuk menghasilkan serat yang stabil dan fungsional. Di samping itu, tinjauan ini juga membahas potensi aplikasi serat nano dalam bidang medis, seperti wound dressing dan pembalut antimikroba, serta implikasi fisika dari interaksi serat nano dengan permukaan bakteri. Kesimpulannya, meskipun penelitian ini menjanjikan, diperlukan pengembangan lebih lanjut untuk memaksimalkan efektivitas antibakteri serat nano melalui pendekatan interdisipliner yang mencakup aspek fitokimia dan fisika.
References
Abdillah, U., Yazid, H., Ahmad, S., Makhtar, N., Zaubidah, S., Shan Chen, R., & Hadifah Syifa, N. (2022). The effect of various electrospinning parameter and sol-gel concentration on morphology of silica and titania nanofibers. IOP Conference Series: Materials Science and Engineering, 1231(1), 012012. https://doi.org/10.1088/1757-899x/1231/1/012012
Akan, A. E., & Özkan, D. B. (2018). Determination of drying behaviour in industrial type convectional dryer and mathematical modelling. Thermal Science, 2018(3), 1935–1950. https://doi.org/10.2298/TSCI180315244A
Al-Okaidy, H. S., & Waisi, B. I. (2023). The Effect of Electrospinning Parameters on Morphological and Mechanical Properties of PAN-based Nanofibers Membrane. Baghdad Science Journal, 20(4), 1433–1441. https://doi.org/10.21123/bsj.2023.7309
Anaya-Mancipe, J. M., Queiroz, V. M., dos Santos, R. F., Castro, R. N., Cardoso, V. S., Vermelho, A. B., Dias, M. L., & Thiré, R. M. S. M. (2023). Electrospun Nanofibers Loaded with Plantago major L. Extract for Potential Use in Cutaneous Wound Healing. Pharmaceutics, 15(4). https://doi.org/10.3390/pharmaceutics15041047
Aulia, H. R., Wienaldi, W., & Fioni, F. (2023). Effectiveness of green betel leaf extract cream in healing cut wounds. Jurnal Prima Medika Sains, 5(2), 187–195. https://doi.org/10.34012/jpms.v5i2.4399
Azad, M. A. K. (2024). Antimicrobial resistance : Real threat for the clinician. Bangladesh Journal of Medicine, 35(2), 131. https://doi.org/10.3329/bjm.v35i20.73370
Azarmi, R., Ashjaran, A., Nourbakhsh, S., & Talebian, A. (2022). Plant extract delivery and antibacterial properties of nano bacterial cellulose in the presence of dendrimer, chitosan, and herbal materials. Journal of Industrial Textiles, 52, 1–23. https://doi.org/10.1177/15280837221121977
Barabás, R., & Vészi, A. (2024). Comparative Study of Electrospinning Parameters for Production of Polylactic Acid and Polycaprolactone Nanofibers Based on Design of Experiment. Periodica Polytechnica Chemical Engineering, 68(2), 265–275. https://doi.org/10.3311/PPch.22814
Cao, K., Zhang, F., & Chang, R. C. (2020). A charge-based mechanistic study into the effects of process parameters on fiber accumulating geometry for a melt electrohydrodynamic process. Processes, 8(11), 1–11. https://doi.org/10.3390/pr8111440
Castellanos, D., Martin, P., McCourt, M., Kearns, M., Butterfield, J., & Cassidy, P. (2022). Role of Viscosity on Optimum Polymer-Fibre Interaction during Rotational Moulding Sintering. Key Engineering Materials, 926 KEM, 1874–1881. https://doi.org/10.4028/p-c0a229
Chen, X., Cao, H., He, Y., Zhou, Q., Li, Z., Wang, W., He, Y., Tao, G., & Hou, C. (2022). Advanced functional nanofibers: strategies to improve performance and expand functions. Frontiers of Optoelectronics, 15(1), 1–19. https://doi.org/10.1007/s12200-022-00051-2
Condren, A. R., Costa, M. S., Sanchez, N. R., Konkapaka, S., Gallik, K. L., Saxena, A., Murphy, B. T., & Sanchez, L. M. (2020). Addition of insoluble fiber to isolation media allows for increased metabolite diversity of lab-cultivable microbes derived from zebrafish gut samples. Gut Microbes, 11(4), 1064–1076. https://doi.org/10.1080/19490976.2020.1740073
Dewi, W. K., Indahsari, D. N., Prastuti, O. P., & Septiani, E. L. (2021). Sintesis Nanofiber PVP dengan Ekstrak Basella rubra Linn. Menggunakan Metode Elektrospinning. Jurnal Teknik Kimia Dan Lingkungan, 5(1), 55–60. https://doi.org/10.33795/jtkl.v5i1.203
Dhyani, P., Quispe, C., Sharma, E., Bahukhandi, A., Sati, P., Attri, D. C., Szopa, A., Sharifi-Rad, J., Docea, A. O., Mardare, I., Calina, D., & Cho, W. C. (2022). Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell International, 22(1), 1–20. https://doi.org/10.1186/s12935-022-02624-9
Dou, X., Wang, A., Wang, S., Shao, D., Xing, G., & Qian, K. (2022). Study on the Viscosity Optimization of Polymer Solutions in a Heavy Oil Reservoir Based on Process Simulation. Energies, 15(24). https://doi.org/10.3390/en15249473
Eren Böncü, T. (2023). Fabrication and Controlling Morphology of Polyethylene Oxide/Sodium Alginate Beads and/or Fibers: Effect of Viscosity and Conductivity in Electrospinning. Ankara Universitesi Eczacilik Fakultesi Dergisi, 47(2), 420–429. https://doi.org/10.33483/jfpau.1216758
Gunarti, N., Yuniarsih, N., Toni. S, R. M., Khoerunnisa, R., Allahuddin, A., Anggraeni, F., & Ruhdiana, T. (2022). Artikel Review: Kandungan Senyawa Aktif Tanaman Untuk Kesehatan Kulit. JFIOnline | Print ISSN 1412-1107 | e-ISSN 2355-696X, 14(2), 190–195. https://doi.org/10.35617/jfionline.v14i2.86
Guo, Y., Wang, X., Shen, Y., Dong, K., Shen, L., & Alzalab, A. A. A. (2022). Research progress, models and simulation of electrospinning technology: a review. Journal of Materials Science, 57(1), 58–104. https://doi.org/10.1007/s10853-021-06575-w
Herliana, H., Yusuf, H. Y., Laviana, A., Wandawa, G., & Abbas, B. (2024). In Vitro Hemostatic Activity of Novel Fish Gelatin–Alginate Sponge (FGAS) Prototype. Polymers, 16(2047). https://doi.org/10.3390/polym16142047
Jiang, Z., Zheng, Z., Yu, S., Gao, Y., Ma, J., Huang, L., & Yang, L. (2023). Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. In Pharmaceutics (Vol. 15, Issue 7). https://doi.org/10.3390/pharmaceutics15071829
Kaempe, H. S., Komansilan, S., Rumondor, R., & Maliangkay, H. P. (2023). Skrining Fitokimia Ekstrak Kulit Buah Alpukat (Persea americana Mill) Sebagai Obat Tradisional. Pharmacon, 12(2), 223–228.
Karim, M. B., Kanaya, S., & Altaf-Ul-Amin, M. (2022). Antibacterial Activity Prediction of Plant Secondary Metabolites Based on a Combined Approach of Graph Clustering and Deep Neural Network. Molecular Informatics, 41(7), 1–11. https://doi.org/10.1002/minf.202100247
Karnwal, A., Kumar, G., Pant, G., Hossain, K., Ahmad, A., & Alshammari, M. B. (2023). Perspectives on Usage of Functional Nanomaterials in Antimicrobial Therapy for Antibiotic-Resistant Bacterial Infections. ACS Omega, 8(15), 13492–13508. https://doi.org/10.1021/acsomega.3c00110
Khafid, A., Wiraputra, M. D., Putra, A. C., Khoirunnisa, N., Putri, A. A. K., Suedy, S. W. A., & Nurchayati, Y. (2023). UJi Kualitatif Metabolit Sekunder pada Beberapa Tanaman yang Berkhasiat sebagai Obat Tradisional. Buletin Anatomi Dan Fisiologi, 8(1), 61–70. https://doi.org/10.14710/baf.8.1.2023.61-70
Khanzada, H., & Kumpikaitė, E. (2024). Anti-bacterial nanofibers and their biomedical applications–a review. Journal of the Textile Institute, April(0), 1–19. https://doi.org/10.1080/00405000.2024.2332851
Korniienko, V., Husak, Y., Radwan-Pragłowska, J., Holubnycha, V., Samokhin, Y., Yanovska, A., Varava, J., Diedkova, K., Janus, Ł., & Pogorielov, M. (2022). Impact of Electrospinning Parameters and Post-Treatment Method on Antibacterial and Antibiofilm Activity of Chitosan Nanofibers. Molecules, 27(10). https://doi.org/10.3390/molecules27103343
Kurniati, N., Zaini, W. S., Hamtini, H., Pratama, M. R. T., & Ridwanulloh, M. (2024). Pemanfaatan Ekstrak Daun Pepaya (Carica papaya L), Sambiloto (Andrographis paniculata), Miana (Coleus scutellarioides L) Sebagai Antibakteri (Studi Literatur Review). Journal of Medical Laboratory Research, 2(2), 39–42. https://doi.org/10.36743/jomlr.v2i2.746
Kusumaatmaja, A., Manaf, M. N., Hidayat, S. N., Triyana, K., Rahma, F., Kadja, G. T. M., & Yunus, M. (2023). The Spatial Arrangement of The Electric Field in the Needle-Plate Electrospinning. Indonesian Journal of Applied Physics, 13(2), 201. https://doi.org/10.13057/ijap.v13i2.67191
Langwald, S. V., Ehrmann, A., & Sabantina, L. (2023). Measuring Physical Properties of Electrospun Nanofiber Mats for Different Biomedical Applications. Membranes, 13(5), 20–24. https://doi.org/10.3390/membranes13050488
Liu, Z., Ju, K., Wang, Z., Li, W., Ke, H., & He, J. (2019). Electrospun Jets Number and Nanofiber Morphology Effected by Voltage Value: Numerical Simulation and Experimental Verification. Nanoscale Research Letters, 14(1). https://doi.org/10.1186/s11671-019-3148-y
Lu, P. (2023). Application of Flavonoids in Anti-Aging and Neuroprotection. Highlights in Science, Engineering and Technology, 80, 272–279. https://doi.org/10.54097/reykbe53
Médici, E. F., & Otero, A. D. (2023). Album of Porous Media: Structure and Dynamics. Album of Porous Media: Structure and Dynamics, 1–146. https://doi.org/10.1007/978-3-031-23800-0
Mutia, T., Novarini, E., & Gustiani, R. S. (2020). Preparasi Dan Karakterisasi Membran Serat Nano Polivinil Alkohol/Gelatin Dengan Antibiotika Topikal Menggunakan Metode Electrospinning. Arena Tekstil, 35(2), 95. https://doi.org/10.31266/at.v35i2.5867
Niza, S., Khumala, I. P., Herdiyani, D. A., & Pramuningtiyas, R. (2020). Efektifitas Ekstrak Daun Pepaya (Carica Papaya) Terhadap Luka Bakar Terinfeksi. Universitas Muhammadiyah Surakarta, 178–191. https://publikasiilmiah.ums.ac.id/xmlui/handle/11617/12440%0Ahttps://publikasiilmiah.ums.ac.id/xmlui/bitstream/handle/11617/12440/16. Solikhatin Niza.pdf?sequence=1&isAllowed=y
Novarini, E., Mutia, T., & Gustiani, R. S. (2021). Aktivitas Antibakteri Dan Uji Efikasi in Vivo Membran Serat Nano Polivinil Alkohol/Gelatin Dengan Antibiotika Topikal Untuk Tekstil Medis Pembalut Luka. Arena Tekstil, 36(1), 7–16. https://doi.org/10.31266/at.v36i1.6708
Nur, A. F. F., & Kusumawati, D. H. (2023). Karakteristik Porositas dan Antibakteri Wound Dressing Nanofiber PVA-Pare (Momordica charantia). Sains Dan Matematika, 8(2), 32–40. https://doi.org/10.26740/sainsmat.v8n2.p32-40
Pattananandecha, T., Apichai, S., Julsrigival, J., Ogata, F., Kawasaki, N., & Saenjum, C. (2022). Antibacterial Activity against Foodborne Pathogens and Inhibitory Effect on Anti-Inflammatory Mediators’ Production of Brazilin-Enriched
Extract from Caesalpinia sappan Linn. Plants, 11(13), 2–10. https://doi.org/10.3390/plants11131698
Permatasari, N. D., Witoyo, J. E., Masruri, Yuwono, S. S., & Widjanarko, S. B. (2022). In Silico Screening of Syzygium myrtifolium Flavonoid Compounds as AntiBacterial Activity. Journal of Tropical Life Science, 12(3), 299–306. https://doi.org/10.11594/jtls.12.03.02
Rafly, W., Suryati, S., Masrullita, M., Nurlaila, R., & Sulhatun, S. (2023). Modifikasi Biokomposit Kitosan-Pati Jagung Untuk Pembalut Luka Primer Dengan Asam Sitrat Dan Pektin. Chemical Engineering Journal Storage (CEJS), 3(6), 769. https://doi.org/10.29103/cejs.v3i6.11473
Rahmat, E., Lee, J., & Kang, Y. (2021). Javanese Turmeric (Curcuma xanthorrhiza Roxb.): Ethnobotany, Phytochemistry, Biotechnology, and Pharmacological Activities. Evidence-Based Complementary and Alternative Medicine, 2021(4747), 1–15. https://doi.org/10.1155/2021/9960813
Rasheed, H. A., Rehman, A., Karim, A., Al-Asmari, F., Cui, H., & Lin, L. (2024). A comprehensive insight into plant-derived extracts/bioactives: Exploring their antimicrobial mechanisms and potential for high-performance food applications. Food Bioscience, 59(April), 104035. https://doi.org/10.1016/j.fbio.2024.104035
Rohma, L. Y., & Kusumawati, D. H. (2024). Efektivitas Antibakteri PVA-Ekstrak Daun Sirsak Sebagai Penutup Luka. Jurnal Inovasi Fisika Indonesia (IFI), 13(1), 14–20.
Rubiano-Navarrete, A. F., Rosas Cuesta, R. A., Torres Perez, Y., & Gómez Pachón, E. Y. (2024). From fibers electrospun with honey to the healing of wounds: a review. Ingeniería y Competitividad, 26(2), 1–40. https://doi.org/10.25100/iyc.v26i2.12811
Ruhal, R., & Kataria, R. (2021). Biofilm patterns in gram-positive and gram-negative bacteria. Microbiological Research, 251(March), 126829. https://doi.org/10.1016/j.micres.2021.126829
Sekowski, S., Naziris, N., Chountoulesi, M., Olchowik-Grabarek, E., Czerkas, K., Veiko, A., Abdulladjanova, N., Demetzos, C., & Zamaraeva, M. (2023). Interaction of Rhus typhina Tannin with Lipid Nanoparticles: Implication for the Formulation of a Tannin–Liposome Hybrid Biomaterial with Antibacterial Activity. Journal of Functional Biomaterials, 14(6). https://doi.org/10.3390/jfb14060296
Septiani, D. A., Hakim, A., Patech, L. R., Zulhalifah, Z., & Siswadi, S. (2021). Isolation and Identification of Andrographolide Compounds from the Leaves of Sambiloto Plant (Andrographis paniculata Ness). Acta Chimica Asiana, 4(1), 108–113. https://doi.org/10.29303/aca.v4i1.65
Shahzadi, L., Ramzan, A., Anjum, A., Jabbar, F., Khan, A. F., Manzoor, F., Shahzad, S. A., Chaudhry, A. A., Rehman, I. ur, & Yar, M. (2022). An efficient new method for electrospinning chitosan and heparin for the preparation of pro-angiogenic nanofibrous membranes for wound healing applications. Journal of Applied Polymer Science, 139(48), 1–14. https://doi.org/10.1002/app.53212
Sianipar, E. A. (2021). The Potential of Indonesian Traditional Herbal Medicine as Immunomodulatory Agents: A Review. International Journal of Pharmaceutical Sciences and Research, 12(10), 5229–5237. https://doi.org/10.13040/IJPSR.0975-8232.12(10).5229-37
Soraya, S. (2023). Uji Kandungan Tanin Daun Salam (Sizygium Polyanthum) Menggunakan Berbagai Konsentrasi Etanol. Jurnal Skala Kesehatan, 14(2), 129–135. https://doi.org/10.31964/jsk.v14i2.417
Srilistari, Almafie, M. R., Marlina, L., Jauhari, J., & Sriyanti, I. (2021). Pemintalan Elektrik dan Karakterisasi Naopartikel-Nanofiber dari Polyvinylpyrrolidone/Ekstrak Daun Binahong (PVP/BDE). Jurnal Inovasi Dan Pembelajaran Fisika, 08(2), 155–167.
Supriyanto, A., Murni, M. L., Marlina, F., & Pangga, D. (2018). Uji Biokompatibilitas Nanofiber Komposit Kitosan/PVA Sebagai Pembalut Luka. Lensa: Jurnal Kependidikan Fisika, 6(1), 37. https://doi.org/10.33394/j-lkf.v6i1.934
Suryati, Azhari, & Pasaribu, D. L. (2021). Pembuatan Biokomposit Kitosan / Alginat / Kolagen Untuk Aplikasi. Jurnal Teknologi Kimia Unimal, 1(Mei), 48–60.
Tahir, M. F., Khan, M. Z., Attacha, S., Asim, N., Tayyab, M., Ali, A., Militky, J., & Tomková, B. (2022). The Comparative Performance of Phytochemicals, Green Synthesised Silver Nanoparticles, and Green Synthesised Copper
Nanoparticles-Loaded Textiles to Avoid Nosocomial Infections. Nanomaterials, 12(20). https://doi.org/10.3390/nano12203629
Tallam, A. K., Sahithi, A., & Nuli, M. V. (2023). A review on phytosomes as innovative delivery systems for phytochemicals. International Journal of Pharmacognosy and Chemistry, 4(1), 1–8. https://doi.org/10.46796/ijpc.v4i1.416
Triwahyuni, T., Rusmini, H., & Yuansah, R. (2019). Pengaruh Pemberian Senyawa Saponin dalam Ekstrak Mentimun (Cucumissativus) Terhadap Penurunan Berat Badan Mencit (Mus musculus L). Jurnal Analis Farmasi, 4(1), 59–65.
Tumpu, M., Lapian, F. E., Mansyur, Pasanda, O. S., Muliawan, I. W., Indrayani, P., & Yasa, I. G. M. (2022). Energi Hijau. In Penambahan Natrium Benzoat Dan Kalium Sorbat (Antiinversi) Dan Kecepatan Pengadukan Sebagai Upaya Penghambatan Reaksi Inversi Pada Nira Tebu.
Umayah, S. (2022). Nanoenkapsulasi Minyak Atsiri Jahe Emprit (zingiber officinale roscoe) dan bunga cengkeh sebagai antibakteri Klebsiella pneumoniae dan Micrococcus luteus. In Universitas Islam Indonesia.
Wahdania, A., & Kusumawati, D. H. (2023). Karakteristik Morfologi Nanofiber Pva-Madu-Kunyit Sebagai Wound Dressing. Inovasi Fisika Indonesia, 12(3), 129–135.
Downloads
Published
Issue
Section
License

 JUPITER: Jurnal Penelitian Fisika dan Terapannya by http://www.univpgri-palembang.ac.id/e_jurnal/index.php/Jupiter/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.