Potensi Antibakteri Serat Nano dari Ekstrak Tanaman Obat Indonesia: Tinjauan Fitokimia dan Teknologi Elektrospinning

Authors

  • Atina Atina Department of Physics, Universitas PGRI Palembang
  • Putri Kartiwi Universitas PGRI Palembang
  • Jiani Fahera Universitas PGRI Palembang

DOI:

https://doi.org/10.31851/jupiter.v6i2.16961

Abstract

Pengembangan serat nano berbasis tanaman obat melalui teknologi elektrospinning telah menarik minat besar dalam penelitian antibakteri karena karakteristik fisika unik dari serat nano, seperti luas permukaan yang tinggi dan porositas yang dapat disesuaikan. Artikel ini membahas potensi antibakteri serat nano yang dihasilkan dari ekstrak tanaman obat asli Indonesia, dengan fokus pada tinjauan skrining fitokimia dan teknik elektrospinning. Metabolit sekunder seperti flavonoid, alkaloid, tanin, dan saponin yang terkandung dalam tanaman obat Indonesia diketahui memiliki aktivitas antibakteri. Proses elektrospinning memungkinkan pembuatan serat nano dengan diameter submikron hingga nanometer, yang dapat meningkatkan efektivitas antibakteri melalui distribusi yang merata dari komponen bioaktif. Artikel ini juga mengulas prinsip fisika yang mendasari proses elektrospinning, termasuk pengaruh parameter tegangan, jarak nozzle-kolektor, dan viskositas larutan terhadap morfologi serat. Tantangan utama yang dihadapi dalam produksi serat nano berbasis tanaman obat meliputi homogenisasi ekstrak dalam matriks polimer dan optimisasi parameter fisik untuk menghasilkan serat yang stabil dan fungsional. Di samping itu, tinjauan ini juga membahas potensi aplikasi serat nano dalam bidang medis, seperti wound dressing dan pembalut antimikroba, serta implikasi fisika dari interaksi serat nano dengan permukaan bakteri. Kesimpulannya, meskipun penelitian ini menjanjikan, diperlukan pengembangan lebih lanjut untuk memaksimalkan efektivitas antibakteri serat nano melalui pendekatan interdisipliner yang mencakup aspek fitokimia dan fisika.

Author Biography

Atina Atina, Department of Physics, Universitas PGRI Palembang

SINTA ID : 104270

References

Abdillah, U., Yazid, H., Ahmad, S., Makhtar, N., Zaubidah, S., Shan Chen, R., & Hadifah Syifa, N. (2022). The effect of various electrospinning parameter and sol-gel concentration on morphology of silica and titania nanofibers. IOP Conference Series: Materials Science and Engineering, 1231(1), 012012. https://doi.org/10.1088/1757-899x/1231/1/012012

Akan, A. E., & Özkan, D. B. (2018). Determination of drying behaviour in industrial type convectional dryer and mathematical modelling. Thermal Science, 2018(3), 1935–1950. https://doi.org/10.2298/TSCI180315244A

Al-Okaidy, H. S., & Waisi, B. I. (2023). The Effect of Electrospinning Parameters on Morphological and Mechanical Properties of PAN-based Nanofibers Membrane. Baghdad Science Journal, 20(4), 1433–1441. https://doi.org/10.21123/bsj.2023.7309

Anaya-Mancipe, J. M., Queiroz, V. M., dos Santos, R. F., Castro, R. N., Cardoso, V. S., Vermelho, A. B., Dias, M. L., & Thiré, R. M. S. M. (2023). Electrospun Nanofibers Loaded with Plantago major L. Extract for Potential Use in Cutaneous Wound Healing. Pharmaceutics, 15(4). https://doi.org/10.3390/pharmaceutics15041047

Aulia, H. R., Wienaldi, W., & Fioni, F. (2023). Effectiveness of green betel leaf extract cream in healing cut wounds. Jurnal Prima Medika Sains, 5(2), 187–195. https://doi.org/10.34012/jpms.v5i2.4399

Azad, M. A. K. (2024). Antimicrobial resistance : Real threat for the clinician. Bangladesh Journal of Medicine, 35(2), 131. https://doi.org/10.3329/bjm.v35i20.73370

Azarmi, R., Ashjaran, A., Nourbakhsh, S., & Talebian, A. (2022). Plant extract delivery and antibacterial properties of nano bacterial cellulose in the presence of dendrimer, chitosan, and herbal materials. Journal of Industrial Textiles, 52, 1–23. https://doi.org/10.1177/15280837221121977

Barabás, R., & Vészi, A. (2024). Comparative Study of Electrospinning Parameters for Production of Polylactic Acid and Polycaprolactone Nanofibers Based on Design of Experiment. Periodica Polytechnica Chemical Engineering, 68(2), 265–275. https://doi.org/10.3311/PPch.22814

Cao, K., Zhang, F., & Chang, R. C. (2020). A charge-based mechanistic study into the effects of process parameters on fiber accumulating geometry for a melt electrohydrodynamic process. Processes, 8(11), 1–11. https://doi.org/10.3390/pr8111440

Castellanos, D., Martin, P., McCourt, M., Kearns, M., Butterfield, J., & Cassidy, P. (2022). Role of Viscosity on Optimum Polymer-Fibre Interaction during Rotational Moulding Sintering. Key Engineering Materials, 926 KEM, 1874–1881. https://doi.org/10.4028/p-c0a229

Chen, X., Cao, H., He, Y., Zhou, Q., Li, Z., Wang, W., He, Y., Tao, G., & Hou, C. (2022). Advanced functional nanofibers: strategies to improve performance and expand functions. Frontiers of Optoelectronics, 15(1), 1–19. https://doi.org/10.1007/s12200-022-00051-2

Condren, A. R., Costa, M. S., Sanchez, N. R., Konkapaka, S., Gallik, K. L., Saxena, A., Murphy, B. T., & Sanchez, L. M. (2020). Addition of insoluble fiber to isolation media allows for increased metabolite diversity of lab-cultivable microbes derived from zebrafish gut samples. Gut Microbes, 11(4), 1064–1076. https://doi.org/10.1080/19490976.2020.1740073

Dewi, W. K., Indahsari, D. N., Prastuti, O. P., & Septiani, E. L. (2021). Sintesis Nanofiber PVP dengan Ekstrak Basella rubra Linn. Menggunakan Metode Elektrospinning. Jurnal Teknik Kimia Dan Lingkungan, 5(1), 55–60. https://doi.org/10.33795/jtkl.v5i1.203

Dhyani, P., Quispe, C., Sharma, E., Bahukhandi, A., Sati, P., Attri, D. C., Szopa, A., Sharifi-Rad, J., Docea, A. O., Mardare, I., Calina, D., & Cho, W. C. (2022). Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell International, 22(1), 1–20. https://doi.org/10.1186/s12935-022-02624-9

Dou, X., Wang, A., Wang, S., Shao, D., Xing, G., & Qian, K. (2022). Study on the Viscosity Optimization of Polymer Solutions in a Heavy Oil Reservoir Based on Process Simulation. Energies, 15(24). https://doi.org/10.3390/en15249473

Eren Böncü, T. (2023). Fabrication and Controlling Morphology of Polyethylene Oxide/Sodium Alginate Beads and/or Fibers: Effect of Viscosity and Conductivity in Electrospinning. Ankara Universitesi Eczacilik Fakultesi Dergisi, 47(2), 420–429. https://doi.org/10.33483/jfpau.1216758

Gunarti, N., Yuniarsih, N., Toni. S, R. M., Khoerunnisa, R., Allahuddin, A., Anggraeni, F., & Ruhdiana, T. (2022). Artikel Review: Kandungan Senyawa Aktif Tanaman Untuk Kesehatan Kulit. JFIOnline | Print ISSN 1412-1107 | e-ISSN 2355-696X, 14(2), 190–195. https://doi.org/10.35617/jfionline.v14i2.86

Guo, Y., Wang, X., Shen, Y., Dong, K., Shen, L., & Alzalab, A. A. A. (2022). Research progress, models and simulation of electrospinning technology: a review. Journal of Materials Science, 57(1), 58–104. https://doi.org/10.1007/s10853-021-06575-w

Herliana, H., Yusuf, H. Y., Laviana, A., Wandawa, G., & Abbas, B. (2024). In Vitro Hemostatic Activity of Novel Fish Gelatin–Alginate Sponge (FGAS) Prototype. Polymers, 16(2047). https://doi.org/10.3390/polym16142047

Jiang, Z., Zheng, Z., Yu, S., Gao, Y., Ma, J., Huang, L., & Yang, L. (2023). Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. In Pharmaceutics (Vol. 15, Issue 7). https://doi.org/10.3390/pharmaceutics15071829

Kaempe, H. S., Komansilan, S., Rumondor, R., & Maliangkay, H. P. (2023). Skrining Fitokimia Ekstrak Kulit Buah Alpukat (Persea americana Mill) Sebagai Obat Tradisional. Pharmacon, 12(2), 223–228.

Karim, M. B., Kanaya, S., & Altaf-Ul-Amin, M. (2022). Antibacterial Activity Prediction of Plant Secondary Metabolites Based on a Combined Approach of Graph Clustering and Deep Neural Network. Molecular Informatics, 41(7), 1–11. https://doi.org/10.1002/minf.202100247

Karnwal, A., Kumar, G., Pant, G., Hossain, K., Ahmad, A., & Alshammari, M. B. (2023). Perspectives on Usage of Functional Nanomaterials in Antimicrobial Therapy for Antibiotic-Resistant Bacterial Infections. ACS Omega, 8(15), 13492–13508. https://doi.org/10.1021/acsomega.3c00110

Khafid, A., Wiraputra, M. D., Putra, A. C., Khoirunnisa, N., Putri, A. A. K., Suedy, S. W. A., & Nurchayati, Y. (2023). UJi Kualitatif Metabolit Sekunder pada Beberapa Tanaman yang Berkhasiat sebagai Obat Tradisional. Buletin Anatomi Dan Fisiologi, 8(1), 61–70. https://doi.org/10.14710/baf.8.1.2023.61-70

Khanzada, H., & Kumpikaitė, E. (2024). Anti-bacterial nanofibers and their biomedical applications–a review. Journal of the Textile Institute, April(0), 1–19. https://doi.org/10.1080/00405000.2024.2332851

Korniienko, V., Husak, Y., Radwan-Pragłowska, J., Holubnycha, V., Samokhin, Y., Yanovska, A., Varava, J., Diedkova, K., Janus, Ł., & Pogorielov, M. (2022). Impact of Electrospinning Parameters and Post-Treatment Method on Antibacterial and Antibiofilm Activity of Chitosan Nanofibers. Molecules, 27(10). https://doi.org/10.3390/molecules27103343

Kurniati, N., Zaini, W. S., Hamtini, H., Pratama, M. R. T., & Ridwanulloh, M. (2024). Pemanfaatan Ekstrak Daun Pepaya (Carica papaya L), Sambiloto (Andrographis paniculata), Miana (Coleus scutellarioides L) Sebagai Antibakteri (Studi Literatur Review). Journal of Medical Laboratory Research, 2(2), 39–42. https://doi.org/10.36743/jomlr.v2i2.746

Kusumaatmaja, A., Manaf, M. N., Hidayat, S. N., Triyana, K., Rahma, F., Kadja, G. T. M., & Yunus, M. (2023). The Spatial Arrangement of The Electric Field in the Needle-Plate Electrospinning. Indonesian Journal of Applied Physics, 13(2), 201. https://doi.org/10.13057/ijap.v13i2.67191

Langwald, S. V., Ehrmann, A., & Sabantina, L. (2023). Measuring Physical Properties of Electrospun Nanofiber Mats for Different Biomedical Applications. Membranes, 13(5), 20–24. https://doi.org/10.3390/membranes13050488

Liu, Z., Ju, K., Wang, Z., Li, W., Ke, H., & He, J. (2019). Electrospun Jets Number and Nanofiber Morphology Effected by Voltage Value: Numerical Simulation and Experimental Verification. Nanoscale Research Letters, 14(1). https://doi.org/10.1186/s11671-019-3148-y

Lu, P. (2023). Application of Flavonoids in Anti-Aging and Neuroprotection. Highlights in Science, Engineering and Technology, 80, 272–279. https://doi.org/10.54097/reykbe53

Médici, E. F., & Otero, A. D. (2023). Album of Porous Media: Structure and Dynamics. Album of Porous Media: Structure and Dynamics, 1–146. https://doi.org/10.1007/978-3-031-23800-0

Mutia, T., Novarini, E., & Gustiani, R. S. (2020). Preparasi Dan Karakterisasi Membran Serat Nano Polivinil Alkohol/Gelatin Dengan Antibiotika Topikal Menggunakan Metode Electrospinning. Arena Tekstil, 35(2), 95. https://doi.org/10.31266/at.v35i2.5867

Niza, S., Khumala, I. P., Herdiyani, D. A., & Pramuningtiyas, R. (2020). Efektifitas Ekstrak Daun Pepaya (Carica Papaya) Terhadap Luka Bakar Terinfeksi. Universitas Muhammadiyah Surakarta, 178–191. https://publikasiilmiah.ums.ac.id/xmlui/handle/11617/12440%0Ahttps://publikasiilmiah.ums.ac.id/xmlui/bitstream/handle/11617/12440/16. Solikhatin Niza.pdf?sequence=1&isAllowed=y

Novarini, E., Mutia, T., & Gustiani, R. S. (2021). Aktivitas Antibakteri Dan Uji Efikasi in Vivo Membran Serat Nano Polivinil Alkohol/Gelatin Dengan Antibiotika Topikal Untuk Tekstil Medis Pembalut Luka. Arena Tekstil, 36(1), 7–16. https://doi.org/10.31266/at.v36i1.6708

Nur, A. F. F., & Kusumawati, D. H. (2023). Karakteristik Porositas dan Antibakteri Wound Dressing Nanofiber PVA-Pare (Momordica charantia). Sains Dan Matematika, 8(2), 32–40. https://doi.org/10.26740/sainsmat.v8n2.p32-40

Pattananandecha, T., Apichai, S., Julsrigival, J., Ogata, F., Kawasaki, N., & Saenjum, C. (2022). Antibacterial Activity against Foodborne Pathogens and Inhibitory Effect on Anti-Inflammatory Mediators’ Production of Brazilin-Enriched

Extract from Caesalpinia sappan Linn. Plants, 11(13), 2–10. https://doi.org/10.3390/plants11131698

Permatasari, N. D., Witoyo, J. E., Masruri, Yuwono, S. S., & Widjanarko, S. B. (2022). In Silico Screening of Syzygium myrtifolium Flavonoid Compounds as AntiBacterial Activity. Journal of Tropical Life Science, 12(3), 299–306. https://doi.org/10.11594/jtls.12.03.02

Rafly, W., Suryati, S., Masrullita, M., Nurlaila, R., & Sulhatun, S. (2023). Modifikasi Biokomposit Kitosan-Pati Jagung Untuk Pembalut Luka Primer Dengan Asam Sitrat Dan Pektin. Chemical Engineering Journal Storage (CEJS), 3(6), 769. https://doi.org/10.29103/cejs.v3i6.11473

Rahmat, E., Lee, J., & Kang, Y. (2021). Javanese Turmeric (Curcuma xanthorrhiza Roxb.): Ethnobotany, Phytochemistry, Biotechnology, and Pharmacological Activities. Evidence-Based Complementary and Alternative Medicine, 2021(4747), 1–15. https://doi.org/10.1155/2021/9960813

Rasheed, H. A., Rehman, A., Karim, A., Al-Asmari, F., Cui, H., & Lin, L. (2024). A comprehensive insight into plant-derived extracts/bioactives: Exploring their antimicrobial mechanisms and potential for high-performance food applications. Food Bioscience, 59(April), 104035. https://doi.org/10.1016/j.fbio.2024.104035

Rohma, L. Y., & Kusumawati, D. H. (2024). Efektivitas Antibakteri PVA-Ekstrak Daun Sirsak Sebagai Penutup Luka. Jurnal Inovasi Fisika Indonesia (IFI), 13(1), 14–20.

Rubiano-Navarrete, A. F., Rosas Cuesta, R. A., Torres Perez, Y., & Gómez Pachón, E. Y. (2024). From fibers electrospun with honey to the healing of wounds: a review. Ingeniería y Competitividad, 26(2), 1–40. https://doi.org/10.25100/iyc.v26i2.12811

Ruhal, R., & Kataria, R. (2021). Biofilm patterns in gram-positive and gram-negative bacteria. Microbiological Research, 251(March), 126829. https://doi.org/10.1016/j.micres.2021.126829

Sekowski, S., Naziris, N., Chountoulesi, M., Olchowik-Grabarek, E., Czerkas, K., Veiko, A., Abdulladjanova, N., Demetzos, C., & Zamaraeva, M. (2023). Interaction of Rhus typhina Tannin with Lipid Nanoparticles: Implication for the Formulation of a Tannin–Liposome Hybrid Biomaterial with Antibacterial Activity. Journal of Functional Biomaterials, 14(6). https://doi.org/10.3390/jfb14060296

Septiani, D. A., Hakim, A., Patech, L. R., Zulhalifah, Z., & Siswadi, S. (2021). Isolation and Identification of Andrographolide Compounds from the Leaves of Sambiloto Plant (Andrographis paniculata Ness). Acta Chimica Asiana, 4(1), 108–113. https://doi.org/10.29303/aca.v4i1.65

Shahzadi, L., Ramzan, A., Anjum, A., Jabbar, F., Khan, A. F., Manzoor, F., Shahzad, S. A., Chaudhry, A. A., Rehman, I. ur, & Yar, M. (2022). An efficient new method for electrospinning chitosan and heparin for the preparation of pro-angiogenic nanofibrous membranes for wound healing applications. Journal of Applied Polymer Science, 139(48), 1–14. https://doi.org/10.1002/app.53212

Sianipar, E. A. (2021). The Potential of Indonesian Traditional Herbal Medicine as Immunomodulatory Agents: A Review. International Journal of Pharmaceutical Sciences and Research, 12(10), 5229–5237. https://doi.org/10.13040/IJPSR.0975-8232.12(10).5229-37

Soraya, S. (2023). Uji Kandungan Tanin Daun Salam (Sizygium Polyanthum) Menggunakan Berbagai Konsentrasi Etanol. Jurnal Skala Kesehatan, 14(2), 129–135. https://doi.org/10.31964/jsk.v14i2.417

Srilistari, Almafie, M. R., Marlina, L., Jauhari, J., & Sriyanti, I. (2021). Pemintalan Elektrik dan Karakterisasi Naopartikel-Nanofiber dari Polyvinylpyrrolidone/Ekstrak Daun Binahong (PVP/BDE). Jurnal Inovasi Dan Pembelajaran Fisika, 08(2), 155–167.

Supriyanto, A., Murni, M. L., Marlina, F., & Pangga, D. (2018). Uji Biokompatibilitas Nanofiber Komposit Kitosan/PVA Sebagai Pembalut Luka. Lensa: Jurnal Kependidikan Fisika, 6(1), 37. https://doi.org/10.33394/j-lkf.v6i1.934

Suryati, Azhari, & Pasaribu, D. L. (2021). Pembuatan Biokomposit Kitosan / Alginat / Kolagen Untuk Aplikasi. Jurnal Teknologi Kimia Unimal, 1(Mei), 48–60.

Tahir, M. F., Khan, M. Z., Attacha, S., Asim, N., Tayyab, M., Ali, A., Militky, J., & Tomková, B. (2022). The Comparative Performance of Phytochemicals, Green Synthesised Silver Nanoparticles, and Green Synthesised Copper

Nanoparticles-Loaded Textiles to Avoid Nosocomial Infections. Nanomaterials, 12(20). https://doi.org/10.3390/nano12203629

Tallam, A. K., Sahithi, A., & Nuli, M. V. (2023). A review on phytosomes as innovative delivery systems for phytochemicals. International Journal of Pharmacognosy and Chemistry, 4(1), 1–8. https://doi.org/10.46796/ijpc.v4i1.416

Triwahyuni, T., Rusmini, H., & Yuansah, R. (2019). Pengaruh Pemberian Senyawa Saponin dalam Ekstrak Mentimun (Cucumissativus) Terhadap Penurunan Berat Badan Mencit (Mus musculus L). Jurnal Analis Farmasi, 4(1), 59–65.

Tumpu, M., Lapian, F. E., Mansyur, Pasanda, O. S., Muliawan, I. W., Indrayani, P., & Yasa, I. G. M. (2022). Energi Hijau. In Penambahan Natrium Benzoat Dan Kalium Sorbat (Antiinversi) Dan Kecepatan Pengadukan Sebagai Upaya Penghambatan Reaksi Inversi Pada Nira Tebu.

Umayah, S. (2022). Nanoenkapsulasi Minyak Atsiri Jahe Emprit (zingiber officinale roscoe) dan bunga cengkeh sebagai antibakteri Klebsiella pneumoniae dan Micrococcus luteus. In Universitas Islam Indonesia.

Wahdania, A., & Kusumawati, D. H. (2023). Karakteristik Morfologi Nanofiber Pva-Madu-Kunyit Sebagai Wound Dressing. Inovasi Fisika Indonesia, 12(3), 129–135.

Downloads

Published

2025-02-04