Optimalisasi Aerodinamika pada Sayap Depan Mobil Formula1: Pengaruh Drag dan Lift terhadap Performa Mobil di bawah regulasi FIA: Review

Authors

  • Adinda Fahira Program Studi Fisika, FTK Universitas Islam Negeri Ar-Raniry
  • Sabaruddin Program Studi Fisika, FTK Universitas Islam Negeri Ar-Raniry

DOI:

https://doi.org/10.31851/jupiter.v6i2.17588

Abstract

Artikel ini merupakan tinjauan literatur yang bertujuan untuk menganalisis perubahan desain aerodinamis sayap depan mobil Formula 1 berdasarkan regulasi FIA tahun 2001, 2017, dan 2022. Regulasi 2017 menghasilkan desain lima elemen yang meningkatkan downforce secara signifikan tetapi mengorbankan efisiensi aerodinamis akibat drag tinggi. Penambahan endplates dan penggunaan pendekatan hybrid (parametrik dan adjoint) pada desain tahun 2022 terbukti mampu meningkatkan kinerja aerodinamis, meskipun masih menghadapi tantangan dari efek wake. Perubahan regulasi FIA 2022 dilakukan untuk mengurangi kehilangan downforce akibat turbulensi wake, memungkinkan mobil di belakang mempertahankan hingga 90% downforce, dibandingkan kehilangan hingga 62% pada regulasi sebelumnya. Desain ini dirancang untuk meningkatkan kompetisi, mempermudah manuver menyalip, dan menjaga stabilitas kendaraan.

References

Anish, A., & P.G, S. (2017). Modelling and Analysis of a Car for Reducing Aerodynamic Forces. international journal of engineering trends and technology, 47, 1-17. https://doi.org/10.14445/22315381/IJETT-V47P201.

Castro, X., & Rana, Z. A. (2020). Aerodynamic and structural design of the 2022 Formula One front wing assembly. Fluids, 5(4), 237. https://doi.org/10.3390/fluids5040237

Frias-Gomez, J., Alemany, L., Benavente, Y., Clarke, M. A., de Francisco, J., De Vivo, I., ... & Costas, L. (2023). Night shift work, sleep duration and endometrial cancer risk: A pooled analysis from the Epidemiology of Endometrial Cancer Consortium (E2C2). Sleep Medicine Reviews, 101848.

Granados-Ortiz, F.-J., et al. (2023). 3D CFD simulation of the interaction between front wheels, brake ducts, and front wings of an F1 race car optimized under regulations. Alexandria Engineering Journal, 69, 677–698. https://doi.org/10.1016/j.aej.2023.02.011

Guerrero, A., & Castilla, R. (2020). Aerodynamic study on the wake effect in Formula 1 cars. Energies, 13(19), 5183. https://doi.org/10.3390/en13195183

Hospodář, P., Drábek, A., & Prachař, A. (2021). Aerodynamic Design and Strength Analysis of the Wing for the Purpose of Assessing the Influence of the Bell-Shaped Lift Distribution. Aerospace. https://doi.org/10.3390/aerospace9010013.

Ikhsan Alfajri, N., et al. (2020). The effect of adding a Gurney flap to the MSHD airfoil on a fastback car with varying Gurney flap heights and airfoil angles using CFD modeling. Mekanika: Majalah Ilmiah Mekanika, 19(1). https://doi.org/10.20961/mekanika.v19i1.40005

Kieffer, W., et al. (2006). CFD study of airfoil characteristics for a Formula Mazda race car. Mathematical and Computer Modelling, 43(11-12), 1275–1287. https://doi.org/10.1016/j.mcm.2005.03.011

Mariani, F., et al. (2015). Formula-SAE race car: Experimental and numerical analysis of external aerodynamics. Energy Procedia, 81, 1013–1029. https://doi.org/10.1016/j.egypro.2015.12.111

Pandit, A., & Day, G. (2021). Aerodynamics of F1 car design. Journal of Student Research, 10(2). https://doi.org/10.47611/jsrhs.v10i2.1475

Castro, X., & Zeeshan, A. (2022). Rana. Aerodynamic and Structural Design of a.

Zhang, Z. (2023). A study on aerodynamic developments in Formula One racing. Theoretical and Natural Science, 14(1), 38–41. https://doi.org/10.54254/2753-8818/14/20240875

Downloads

Published

2025-02-04